教師主頁

教研成果

當前位置: 首頁 >  教師主頁 >  汪哲成 >  教研成果

汪哲成

職稱:助理教授,研究員

研究方向:地理空間智能,能源地理,氣候韌性

通訊地址:北京大學城市與環(huán)境學院大樓

zhecheng@pku.edu.cn

個人簡歷 人才培養(yǎng) 科學研究 教研成果

汪哲成,北京大學城市與環(huán)境學院信息地理系研究員、助理教授、博雅青年學者。2016年本科畢業(yè)于清華大學,2023年1月博士畢業(yè)于斯坦福大學,獲土木與環(huán)境工程博士學位與計算機科學博士輔修學位,導師為Ram Rajagopal教授與Arun Majumdar院士。之后繼續(xù)在斯坦福從事博士后研究(Human-Centered AI Postdoctoral Fellow)。工作形成了“地理空間智能模型研發(fā)->地理大數(shù)據(jù)構(gòu)建->能源地理知識發(fā)現(xiàn)與政策啟示”的研究體系,以一作/共同一作/通訊作者在Nature Energy、Joule (2篇)、Nature Communications與AAAI等國際知名期刊與會議上發(fā)表多篇論文,部分被選為封面文章。研究成果被MIT Technology Review、The Hill等媒體廣泛報道,并被Google、PG&E、Breakthrough Energy等多家公司使用。現(xiàn)擔任多個Nature子刊與Cell子刊審稿人。曾獲Stanford Interdisciplinary Graduate Fellowship。

更多詳情見網(wǎng)站:https://wangzhecheng.github.io 

目前正在尋找志同道合的博士生、博士后與科研助理加入課題組。目前尚有一個2026年秋季入學的博士生名額(申請-考核制博士或碩轉(zhuǎn)博),有意向者請盡快郵件聯(lián)系。也歡迎計劃2027年或之后讀博的學生提前聯(lián)系、進組科研。此外,課題組長期招收博士后(包括支持申請北大博雅博士后)與科研助理。

本人有豐富的指導學生經(jīng)驗,曾指導的學生或在頂尖學校實驗室繼續(xù)開展研究,或進入Waymo、Google X等公司工作。正在尋找志同道合的博士生、博士后與科研助理加入課題組。目前尚有一個2026年秋季入學的博士生名額(申請-考核制博士或碩轉(zhuǎn)博),有意向者請盡快郵件聯(lián)系。也歡迎計劃2027年或之后讀博的學生提前聯(lián)系、進組科研。此外,課題組長期招收博士后(包括支持申請北大博雅博士后)與科研助理。

地理空間智能與信息系統(tǒng):適用于遙感、街景等地理大數(shù)據(jù)的多模態(tài)基礎(chǔ)模型;地理空間推理;基于地理空間智能的信息共享系統(tǒng)與可信數(shù)據(jù)空間等。

能源地理與氣候韌性:利用地理空間智能、計量經(jīng)濟學、能源系統(tǒng)建模等方法,探索“能源-氣候-社會”復(fù)雜聯(lián)系及其時空異質(zhì)性,為因地制宜制定政策提供可解釋的參考依據(jù),以加速碳中和進程并提升“基礎(chǔ)設(shè)施-人類”耦合系統(tǒng)的韌性。

代表性論文

  • Zhecheng Wang, Michael Wara, Arun Majumdar, and Ram Rajagopal (2023). Local and Utility-Wide Cost Allocations for a More Equitable Wildfire-Resilient Distribution Grid. Nature Energy(Featured as cover).

  • Zhecheng Wang, Marie-Louise Arlt, Chad Zanocco, Arun Majumdar, and Ram Rajagopal (2022). DeepSolar++: Understanding Residential Solar Adoption Trajectories with Computer Vision and Technology Diffusion Models. Joule.

  • Jiafan Yu*, Zhecheng Wang*, Arun Majumdar, and Ram Rajagopal (2018). DeepSolar: A Machine Learning Framework to Efficiently Construct a Solar Deployment Database in the United States. Joule(Featured as cover). (* Equal contribution)

  • Zhecheng Wang, Arun Majumdar, and Ram Rajagopal (2023). Geospatial Mapping of Distribution Grid with Machine Learning and Publicly-Accessible Multi-Modal Data. Nature Communications.

  • Zhecheng Wang, Rajanie Prabha*, Tianyuan Huang*, Jiajun Wu, and Ram Rajagopal (2024). SkyScript: A Large and Semantically Diverse Vision-Language Dataset for Remote Sensing. AAAI Conference on Artificial Intelligence. (* Equal contribution)

其它論文

  • Tianyuan Huang, Chad Zanocco, Zhecheng Wang, Jackelyn Hwang, and Ram Rajagopal (2025). Neighborhood Built Environment Disparities are Amplified During Extreme Weather Recovery. Nature.

  • Zhecheng Wang (2025). Cost-Effective Adaptation of Electric Grids. Nature Climate Change (News & Views).

  • Tony Liu, Chad Zanocco, Zhecheng Wang, Tianyuan Huang, June Flora, and Ram Rajagopal (2025). Large Language Model Enabled Knowledge Discovery of Building-Level Electrification Using Permit Data. Energy and Buildings.

  • Rajanie Prabha, Zhecheng Wang, Chad Zanocco, June Flora, and Ram Rajagopal (2025). DeepSolar-3M: An AI-Enabled Solar PV Database Documenting 3 Million Systems Across the US. ICLR Tackling Climate Change with Machine Learning Workshop(Best Paper Award)

  • Moritz Wussow, Chad Zanocco, Zhecheng Wang, Rajanie Prabha, June Flora, Dirk Neumann, Arun Majumdar, and Ram Rajagopal (2024). Exploring the Potential of Non-Residential Solar to Tackle Energy Injustice. Nature Energy.

  • Tianyuan Huang, Timothy Dai, Zhecheng Wang, Hesu Yoon, Hao Sheng, Andrew Ng, Ram Rajagopal, and Jackelyn Hwang (2022). Detecting Neighborhood Gentrification at Scale via Street-level Visual Data. IEEE International Conference on Big Data.

  • Kevin Mayer, Benjamin Rausch, Marie-Louise Arlt, Gunther Gust, Zhecheng Wang, Dirk Neumann, and Ram Rajagopal (2022). 3D-PV-Locator: Large-Scale Detection of Rooftop-Mounted Photovoltaic Systems in 3D. Applied Energy.

  • Tianyuan Huang*, Zhecheng Wang*, Hao Sheng*, Andrew Ng, and Ram Rajagopal (2021). M3G: Learning Urban Neighborhood Representation from Multi-Modal Multi-Graph. ACM SIGKDD Workshop on Deep Learning for Spatiotemporal Data. (* equal contribution).

  • Mingxiang Chen, Qichang Chen, Lei Gao, Yilin Chen, and Zhecheng Wang (2021). Predicting Geographic Information with Neural Cellular Automata. AAAI AI for Urban Mobility Workshop.

  • Kevin Mayer, Zhecheng Wang, Marie-Louise Arlt, Dirk Neumann, and Ram Rajagopal (2020). DeepSolar for Germany: A Deep Learning Framework for PV System Mapping from Aerial Imagery. International Conference on Smart Energy Systems and Technologies (SEST).

  • Zhecheng Wang*, Haoyuan Li*, and Ram Rajagopal (2020). Urban2Vec: Incorporating Street View Imagery and POIs for Multi-Modal Urban Neighborhood Embedding. AAAI Conference on Artificial Intelligence. (* Equal contribution)

  • Qinghu Tang*, Zhecheng Wang*, Arun Majumdar, and Ram Rajagopal (2019). Fine-Grained Distribution Grid Mapping Using Street View Imagery. NeurIPS Tackling Climate Change with Machine Learning Workshop. (* Equal contribution)

  • Zhengcheng Wang*, Zhecheng Wang*, Arun Majumdar, and Ram Rajagopal (2019). Identify Solar Panels in Low Resolution Satellite Imagery with Siamese Architecture and Cross-Correlation. NeurIPS Tackling Climate Change with Machine Learning Workshop. (* Equal contribution)

  • Sharon Zhou, Jeremy Irvin, Zhecheng Wang, Eva Zhang, Jabs Aljubran, Will Deadrick, Ram Rajagopal, and Andrew Ng (2019). DeepWind: Weakly Supervised Localization of Wind Turbines in Satellite Imagery NeurIPS Tackling Climate Change with Machine Learning Workshop.

  • Neel Guha, Zhecheng Wang, and Arun Majumdar (2018). Machine Learning for AC Optimal Power Flow. ICML Climate Change Workshop(Best Paper Award Honorable Mention)


类乌齐县| 辽宁省| 穆棱市| 英山县| 绥德县| 措美县| 横山县| 张家口市| 宁晋县| 宿迁市| 敦化市| 花垣县| 界首市| 临潭县| 克什克腾旗| 右玉县| 康乐县| 高雄市| 玛纳斯县| 阿瓦提县| 图木舒克市| 南和县| 水城县| 阆中市| 新兴县| 邵阳县| 来安县| 牙克石市| 天津市| 比如县| 吴川市| 松溪县| 阳曲县| 武宣县| 庐江县| 陇川县| 衡阳市| 和林格尔县| 临夏市| 竹山县| 额尔古纳市|