教師主頁
- 曹廣忠
- 曹軍
- 柴彥威
- 陳彥光
- 陳耀華
- 陳效逑
- 程和發(fā)
- 楚建群
- 戴林琳
- 鄧輝
- 董豫贛
- 付曉芳
- 方海
- 方精云
- 馮長春
- 馮健
- 傅伯杰
- 高艷
- 宮彥萍
- 韓茂莉
- 賀燦飛
- 賀金生
- 胡建英
- 華方圓
- 胡燮
- 黃崇
- Kazuo Isobe
- 吉成均
- 賈小新
- 金鑫
- 李宜垠
- 李有利
- 李本綱
- 李喜青
- 李雙成
- 林堅
- 劉耕年
- 劉文新
- 劉峻峰
- 劉宇
- 劉鴻雁
- 劉濤
- 劉燕花
- 劉剛
- 劉煜
- 劉雪萍
- 劉茂甸
- 劉萍
- 盧曉霞
- 陸雅海
- 馬亮
- 馬建民
- 馬燕
- 蒙吉軍
- 莫多聞
- 蒙冰君
- PHILIPPE CIAIS
- 彭建
- 彭書時
- 樸世龍
- 闕維民
- 宋宛儒
- 沈文權
- 沈澤昊
- 沈國鋒
- 宋峰
- 陶勝利
- 唐曉峰
- 唐志堯
- 唐艷鴻
- 陶澍
- 童昕
- 李婷婷
- 王仰麟
- 王紅亞
- 王志恒
- 王娓
- 王少鵬
- 王旭輝
- 王學軍
- 王喜龍
- 萬祎
- 王愔
- 王長松
- 王開存
- 王昀
- 吳必虎
- 吳健生
- 吳龍峰
- 吳林蔚
- 謝建民
- 徐福留
- 許文君
- 姚蒙
- 于佳鑫
- 楊小柳
- 尹燕平
- 陰劼
- 喻航
- 曾輝
- 張家富
- 張照斌
- 趙鵬軍
- 趙昕奕
- 鄭成洋
- 周力平
- 周豐
- 朱東強
- 朱彪
- 朱晟君
- 朱丹
- 朱江玲
- 張堯
- 張新平
- 張璐瑤
- 趙卡娜
- 汪淼
- 袁文平
- 吳英迪
- 鐘奇瑞
- 劉建寶
- 楊卉
- 張一凡
- 李梅
- 杜世宏
- 秦少杰
- 張修遠
- 楊晨
- 金哲儂
- 張致杰
- 連旭
金哲儂
職稱:長聘副教授、研究員
研究方向:農(nóng)業(yè)生態(tài)學、農(nóng)業(yè)遙感、人工智能
通訊地址:北京市海淀區(qū)海淀路50號北京大學資源東樓
Email : jinzhenong@pku.edu.cn
個人簡介
本人的工作以生態(tài)學理論為基礎,綜合運用機理模型、遙感觀測、人工智能等大數(shù)據(jù)技術手段,研究農(nóng)業(yè)生態(tài)系統(tǒng)對全球變化的響應機制,及其與其他環(huán)境系統(tǒng)之間的交互過程,為科學監(jiān)測和管理農(nóng)田生態(tài)系統(tǒng)的復雜過程提供理論依據(jù)和技術支撐,最終實現(xiàn)農(nóng)業(yè)生產(chǎn)和生態(tài)環(huán)境保護的協(xié)同、可持續(xù)發(fā)展。相關論文發(fā)表在Science, 多個Nature子刊,Global Change Biology, Remote Sensing of Environment 等頂級期刊。曾獲美國國家科學基金會職業(yè)生涯發(fā)展獎(NSF CAREER Award)。
教育經(jīng)歷
2011.8 – 2016.5 美國普渡大學,地球與大氣科學,博士
2007.9 – 2011.7 北京大學,生態(tài)學,學士
工作經(jīng)歷
2024.9 – 至今 北京大學城市與環(huán)境學院、生態(tài)研究中心,長聘副教授、研究員
2024.5 – 2024.8 美國明尼蘇達大學,長聘副教授
2019.1 – 2024.5 美國明尼蘇達大學,助理教授
2018.7 – 2019.1 美國Atlas AI公司,Lead Scientist
2016.7 – 2018.6 美國斯坦福大學,博士后
學術兼職
AGU期刊Earth's Future 副主編
Environmental Research:Food System 編委
SCIENCE CHINA Life Sciences 編委
歡迎對農(nóng)業(yè)生態(tài)學、農(nóng)業(yè)遙感、人工智能感興趣的本科生、研究生和博士后加入研究組!
科學問題
如何在保障糧食安全的同時實現(xiàn)生態(tài)環(huán)境的可持續(xù)發(fā)展?
如何利用人工智能提升數(shù)值模型的預測精度和可遷移性?
科研項目
在美國期間主要項目(已全部于2024年9月回國入職前終止):
【1】NSF CAREER: AI-enabled Integrated Nutrient, Streamflow, and Parcel sImulation for Resilient agroEcosystems (INSPIRE): a framework for climate-smart crop production and cleaner water 主持
【2】NSF III: Medium: Advancing Deep Learning for Inverse Modeling 參與
【3】USDA NIFA: National Artificial Intelligence Institute for Climate-Land Interactions, Mitigations, Adaption, Trade-offs and Economy (AI-CLIMATE) 參與
【4】USDA NIFA: High-resolution integrated assessments of tillage practice impacts on crop production and agroecosystem sustainability in the US Midwest - combining meta-analysis, airborne-satellite sensing, and process-based modeling 參與
【5】USDA FAS: ProsperCashew: Mapping cashew plantation and productivity in Cote d'Ivoire 主持
【6】NSF SCC-IRG Track 1: Co-Producing Community - An integrated approach to building smart and connected nutrient management communities in the US Corn Belt 參與
【7】USDA WinterTurf: A Holistic Approach to Understanding the Mechanisms and Mitigating the Effects of Winter Stress on Turfgrasses in Northern Climates 參與
【8】NSF SitS: Spatial and Temporal Patterns of Soil N and P Cycles Quantified by a Sensor-Model Fusion Framework: Implications for Sustainable Nutrient Management 主持
【9】DOE SMARTFARM: The System of Systems Solutions for Commercial Field-Level Quantification of Soil Organic Carbon and Nitrous Oxide Emission for Scalable Applications (SYMFONI) 參與
【10】USAID SIIL: Geospatial, Farming Systems, and Digital Tools Consortium Building a New Era of Predictive Agricultural Innovation to Improve the Livelihood of Small holder Farmers 參與
【11】USDA FAS: BeninCaju: Mapping cashew plantation and productivity in Benin 主持
【12】NASA LCLUC: Evaluating land use change and livelihood responses to large investments for high-value agriculture: managing risks in the era of Green Morocco Plan 主持
全部論文
https://scholar.google.com/citations?user=DghN-sAAAAAJ&hl=en
近5年代表性論文
#: 通訊作者,下劃線: 指導學生
[1] Yang, Y., Tilman, D.#, Jin, Z.#, Smith, P., Barrett, C.B.#, Zhu, Y.G., ... & Lobell, D.B.# (2024). Climate change exacerbates the environmental impacts of agriculture. Science, 385(6713), eadn3747.
[2] Zhou, J., Zhu, P., Kluger, D. M., Lobell, D. B., & Jin, Z.# (2024). Changes in the Yield Effect of the Preceding Crop in the US Corn Belt Under a Warming Climate. Global Change Biology, 30(11), e17556.
[3] Liu, L., Zhou, W., Guan, K.#, Peng, B., Xu, S., Tang, J., Zhu, Q., Till, J., Jia, X., Jiang, C., Wang, S., ..., Kumar, V. & Jin, Z.# (2024) Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems. Nature Communications, 15, 357.
[4] Yang, Q., Liu, L., Zhou, J., Ghosh, R., Peng, B., Guan, K., Tang, J., Zhou, W., Kumar, V., & Jin, Z.# (2023) A flexible and efficient knowledge-guided machine learning data assimilation (KGML-DA) framework for agroecosystem prediction in the US Midwest. Remote Sensing of Environment, 299, 113880.
[5] Yang, Y., Jin, Z.#, Muller, N.D.#, Driscoll, A., Hernandez, R.R., Grodsky, S., Sloat, L., …, Zhu, Y.G., & Lobell, D.B. (2023) Sustainable irrigation and climate feedbacks. Nature Food, 4, 654–663.
[6] Yin, L., Ghosh, R., Lin, C., Hale, D., Weigl, C., Obrowski, J., Zhou, J., Till, J., Jia, X., You, N., Mao, T., Kumar, V., & Jin, Z.# (2023) Mapping smallholder cashew plantations to inform sustainable tree crop expansion in Benin. Remote Sensing of Environment, 295, 113695.
[7] Liu, L., Xu, S., Tang, J., Guan, K., Griffis, T.J., Erickson, M.D., Frie, A.L., Jia, X., Kim, T., Miller, L.T., Peng, B., ..., Kumar, V., & Jin, Z.# (2022) KGML-ag: A Modeling Framework of Knowledge- Guided Machine Learning to Simulate Agroecosystems: A Case Study of Estimating N2O Emission using Data from Mesocosm Experiments. Geoscientific Model Development, 15, 2839–2858.
[8] Lin, C., Zhong, L., Song, X., Dong, J., Lobell, D.B., & Jin, Z.# (2022) Early- and in-season crop type mapping without current-year ground truth: Generating labels from historical information via a topology-based approach. Remote Sensing of Environment, 274, 112994.
[9] Zhu, P., Kim, T., Jin, Z.#, Lin, C., Wang, X., Ciais, P., Mueller, N.D., AghaKouchak, A., Huang, J., Mulla, D., & Makowski, D. (2022) The critical benefits of snowpack insulation and snowmelt for winter wheat productivity. Nature Climate Change, 12, 485–490.
[10] Benami, E.#, Jin, Z.#, Carter, M., Lobell, D.B., Kenduiywo, B., Ghosh, A., & Hijmans, R. (2021) Uniting remote sensing, crop modelling and economics for agricultural risk management. Nature Review Earth & Environment, 2, 140-159.