教師主頁(yè)

人才培養(yǎng)

當(dāng)前位置: 首頁(yè) >  教師主頁(yè) >  唐志堯 >  人才培養(yǎng)
個(gè)人簡(jiǎn)介 人才培養(yǎng) 科學(xué)研究 教研成果

一、在站博士后與在讀研究生  Postdoctors and graduate students

博士后 (Postdoc.):張宏圖、宋珊珊、張勇強(qiáng)

博士生 (PhD students):戴夢(mèng)得、白云昊、陳金龍、杜文瑞、董昆鵬、張秦澤、馬寅秋

碩士生 (Mater students)施辰玥、文絮、廖民懿

二、出站博士后與畢業(yè)學(xué)生  Former postdoctors and students

出站博士后 (Postdoc.):

崔增 (Zeng CUI), 2025. 邊緣效應(yīng)對(duì)森林結(jié)構(gòu)及碳儲(chǔ)量的影響研究

上官子健 (Zijian SHANGGUAN), 2025. 青藏高原草地植物群落功能性狀對(duì)長(zhǎng)期氣候變化的響應(yīng)

張藝偉 (Yi-Wei ZHANG), 2025. 基于多源高光譜遙感揭示草地結(jié)構(gòu)和功能的變化規(guī)律

左振君 (Zhenjun ZUO), 2025. 水生植物養(yǎng)分分配策略和生物地球化學(xué)生態(tài)位研究

黃力 (Li HUANG), 2024. 中國(guó)古樹大尺度格局及留存機(jī)制. (入選北京大學(xué)優(yōu)秀博士后) 

郭焱培 (Yanpei GUO), 2023. 熱帶森林樹木生長(zhǎng)的限制因素. (入選北京市青年人才托舉工程)

孟媛媛 (Yuanyuan MENG), 2023. 黃土高原人工林時(shí)空動(dòng)態(tài)及其生態(tài)效應(yīng)遙感分析.

陳霞 (Xia CHEN), 2023. 基于數(shù)據(jù)整合的森林生物量積累及樹木水分運(yùn)輸性狀調(diào)控研究. 

畢業(yè)博士生 (PhD students):

張勇強(qiáng) (Yongqiang ZHANG), 2025. 塞罕壩地區(qū)主要樹種生長(zhǎng)與水分利用及其影響因素

宋珊珊 (Shanshan SONG), 2025. 內(nèi)蒙古溫帶草地微生物群落多樣性和構(gòu)建機(jī)制研究

尼格娜熱·阿曼太 (Nigenare AMANTAI), 2025. 中國(guó)半干旱半濕潤(rùn)區(qū)北段土壤水分時(shí)空格局及其與植被動(dòng)態(tài)的關(guān)系

唐榮 (Rong TANG), 2025. 基于無(wú)人機(jī)高光譜遙感的中國(guó)北方溫帶草地植物功能性狀及多樣性研究(CSC-fellow to  UC-Davis)

翁許湘 (Xu-Xiang WENG), 2025. 滇西北白馬雪山灌木功能性狀的海拔格局及影響因素

張宏圖 (Hong-Tu ZHANG), 2024.鄰體相互作用對(duì)中國(guó)東部森林樹木生長(zhǎng)的影響. (CSC-fellow to  Uni-Jyvaskyla,北京大學(xué)優(yōu)秀博士論文).

張藝偉 (Yi-Wei ZHANG), 2023.基于高光譜遙感的青藏高原典型草地群落功能屬性研究. (CSC-fellow to Uni-Twente).

劉同彥 (Tongyan LIU) (碩轉(zhuǎn)博), 2022. 中國(guó)亞熱帶森林樹種多樣性對(duì)樹木微觀生長(zhǎng)和水分利用的影響.

艾尤爾.亥熱提 (Gheyur GHEYRET), 2020. 中國(guó)亞熱帶森林常見樹木徑向生長(zhǎng)及其影響因素.入選新疆自治區(qū)青年人才托舉工程)

郭焱培 (Yanpei GUO), 2019. 中國(guó)北方灌叢分布、結(jié)構(gòu)與功能. (CSC-fellow to Uni-Zurich).入選北京市青年人才托舉工程)

郭強(qiáng) (Qiang GUO) (碩轉(zhuǎn)博), 2019.中國(guó)東部典型森林、 樹木生長(zhǎng)及其穩(wěn)定性格局. (CSC-fellow to Uni-Zurich). 

張則瑾 (Zejin ZHANG), 2016. 中國(guó)陸地自然保護(hù)區(qū)的保護(hù)現(xiàn)狀及效應(yīng).

池秀蓮 (Xiulian CHI) (碩轉(zhuǎn)博), 2015. 中國(guó)東部森林樹木生長(zhǎng)的區(qū)域分異及影響因素. 

張建華 (Jianhua ZHANG, U-CAS), 2014. 氮添加對(duì)北京東靈山灌叢碳循環(huán)的影響. 

畢業(yè)碩士生 (Master students):

林熠偉 (Yi-Wei LIN), 2025. 基于多平臺(tái)眾源數(shù)據(jù)的中國(guó)“異寵” 入侵風(fēng)險(xiǎn)評(píng)估

張思怡 (Siyi ZHANG), 2021. 基于物種組成差異與棲息地完整性的中國(guó)生物多樣性保護(hù)優(yōu)先區(qū)分析

張雪皎 (Xuejiao ZHANG), 2019. 中國(guó)亞熱帶4種樹木樹干液流動(dòng)態(tài)及其與樹木生長(zhǎng)的關(guān)系

張新悅 (Xinyue ZHANG), 2019.塞罕壩地區(qū)近30年來(lái)的土地覆被變化.

蔣旻煒 (Minwei JIANG), 2018. 中國(guó)灌叢土壤碳氮磷含量與密度的分布格局及其影響因素.

閆昱晶 (Yujing YAN), 2016. 氣候變化對(duì)青藏高原特有種子植物分布的影響.

劉長(zhǎng)柱 (Changzhu LIU, U-CAS), 2014. 秦嶺太白山森林植物群落的功能與譜系多樣性.

楊弦 (Xian YANG), 2014. 中國(guó)北方溫帶灌叢碳、氮、磷含量與儲(chǔ)量.

趙廣華 (Guanghua ZHAO), 2013. 中國(guó)自然保護(hù)區(qū)分布特征及其生態(tài)效應(yīng).

畢業(yè)本科生 (Undergraduates):

杜文瑞 (Wen-Rui DU, 2023)、趙溧 (Li ZHAO, 2022)、劉威 (Wei LIU, 2021)、白云昊 (Yunhao BAI, 2020)、

汪毅 (Yi WANG, 2019)、張宏圖 (Hongtu ZHANG, 2019)、李婧 (Jing LI, 2019)、陳候清 (Houqing CHEN, 2018)、

張思怡 (Siyi ZHANG, 2018)、郭強(qiáng) (Qiang GUO, 2014)、宋倩倩 (Qianqian SONG, 2013)、閆昱晶 (Yujing YAN, 2013)、

陶澤興 (Zexing TAO, 2012)、李卓楠 (Zhuonan LI, 2010)、余樂 (Le YU, 2010)、錢致儒 (Zhiru QIAN, 2008)、

饒雪瑩 (Xueying RAO, 2008)、汪潔 (Jie WANG, 2008)、彭李菁 (Lijing PENG, 2007)、李晶 (Jing LI, 2006)、

郭兆迪 (Zhaodi GUO, 2005)

訪問學(xué)者 (Visiting scholar):

和勤 (Qin HE, 2025)

張璐(Lu ZHANG, 2024)

歡迎生態(tài)學(xué)、自然地理學(xué)及相關(guān)學(xué)科學(xué)生聯(lián)系報(bào)考;歡迎本科生加入課題組開展學(xué)術(shù)活動(dòng);長(zhǎng)期招收群落生態(tài)學(xué)、植被生態(tài)學(xué)以及生態(tài)遙感方向博士后。主要研究方向見科研課題部分。Prospective students and postdoctors interested in different aspects of ecology and/or biogeography are welcome. Please contact: zytang(at)pku.edu.cn


一、代表性論文

  1. Bai YH, Tang ZY*. 2024. Enhanced effects of species richness on resistance and resilience of global tree growth to prolonged drought. PNAS 121: e2410467121

  2. Guo YP, ......, Tang ZY*, 2019. Increasing water availability and facilitation weaken biodiversity–biomass relationships in shrublands. Ecology 100: e02624.

  3. Huang L., ... Yang YC*, Tang ZY*. 2025. Religious temples are long-term refuges for old trees in human-dominated landscapes. Current Biology  35: 2994-3000.

  4. Huang L, ... Yang YC*, Tang ZY*, Lindenmayer DB*. 2023. Human activities and species biological traits drive the long-term persistence of old trees in human-dominated landscapes. Nature Plants 9: 898–907.

  5. Shi C-Y, Zhang H-T*, Tang ZY*. 2025 Large-sized trees regulating the structural diversity–productivity relationships through shaping different productive processes in a tropical forest. Proc. R. Soc. B 292: 20242202.

  6. Song SS, Yang X*, ..., Tang ZY*. Abiotic environments prevail over plant functional traits in shaping phyllosphere fungal communities of temperate grasslands in China. ISME Communications 5: ycaf096.

  7. Tang ZY, et al. 2006. Biodiversity in China's mountains. Frontiers in Ecology and the Environment 4: 347-352.

  8. Tang ZY#, Xu WT#, Zhou GY#, et al. 2018. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. PNAS 115: 4033-4038.

  9. Zhang HT, …, Tang ZY*. 2024. Functional dissimilarity in mixed forests promotes stem radial growth by mitigating tree water deficit. National Science Review 11: nwad320.

  10. Zhang ZJ, …, Tang ZY*. 2015. Distribution and conservation of threatened plants in China. Biological Conservation 192: 454-460.

二、教材、辭典及志書

  1. 方精云(主編) 于貴瑞? 劉玲莉? 張知彬? 唐志堯? 彭少麟 (副主編,筆順). 中國(guó)大百科全書(第三版)生態(tài)學(xué). 北京:中國(guó)大百科全書出版社 2025. 

  2. 唐志堯 郭焱培 (主編). 中國(guó)植被志第十三卷第一冊(cè)溫帶暖溫帶落葉闊葉灌叢. 北京:科學(xué)出版社 2025.

  3. 方文靜 唐志堯 方精云(主編). 中國(guó)植被志第一卷第一冊(cè)落葉松林. 北京:科學(xué)出版社 2025.

  4. 蔡瓊 吉成均 方精云主編. 中國(guó)植被志第五卷第五冊(cè)水青岡林. 北京:科學(xué)出版社 2025. (5位編委之一)

  5. 劉鴻雁, 唐志堯, 朱彪著. 野外生態(tài)學(xué)實(shí)習(xí)指導(dǎo). 北京:北京大學(xué)出版社. 2018.

三、專著

  1. 朱相云主編, 唐志堯, 劉冰, 何楊柳, 葉學(xué)華副主編. 中國(guó)牧草資源名錄. 濟(jì)南: 山東科學(xué)技術(shù)出版社有限公司. 2025.

  2. 劉鴻雁等主編 鄭成洋 唐志堯等副主編之一. 河北塞罕壩國(guó)家級(jí)自然保護(hù)區(qū)綜合科學(xué)考察報(bào)告. 北京:科學(xué)出版社. 2025.
  3. 施一公 趙進(jìn)東 陳曄光 金力 主編. 高等學(xué)校生物科學(xué)類專業(yè)人才培養(yǎng)戰(zhàn)略研究報(bào)告暨核心課程體系. 北京: 高等教育出版社. 2025. (39位編委之一)

  4. 劉鴻雁 唐志堯 主編. 華北地區(qū)植物資源保護(hù)與利用. 北京: 科學(xué)出版社. 2021.

  5. 謝宗強(qiáng) 唐志堯 劉慶 徐文婷著. 中國(guó)灌叢生態(tài)系統(tǒng)碳匯. 北京: 科學(xué)出版社. 2019.

  6. 謝宗強(qiáng), 王楊, 唐志堯, 徐文婷著. 中國(guó)常見灌木生物量模型手冊(cè). 北京: 科學(xué)出版社. 2018.

  7. Fang JY, Wang ZH, Tang ZY. Atlas of Woody Plants in China: Distribution and Climate. Higher Education Press -Springer, Beijing & Berlin. 2011.

  8. 方精云 王志恒 唐志堯著. 中國(guó)木本植物分布圖集. 北京: 高等教育出版社, 2010.

  9. 方精云 趙淑清 唐志堯著. 長(zhǎng)江中游濕地生物多樣性保護(hù)的生態(tài)學(xué)基礎(chǔ). 北京: 高等教育出版社. 2006.

四、全部論文列表

            2025

  1. Bai Y., ... Tang ZY*. 2025. Response modes of global vegetation to extreme drought. Global Change Biology 31: e70488. doi: 10.10111/gcb.70488.

  2. Cui Z., ... Tang ZY*. Negative edge effects on forest carbon stocks in China: an estimate based on inventory data. Science China Life Science. (accepted)

  3. Huang E., ... Tang ZY*. Fang J*, 2025. Climatic and non-climatic effects on species occurrence and abundance shift in different trends along elevational gradients. Journal of Plant Ecology doi: 10.1093/jpe/rtaf122.

  4. Huang L., ... Yang Y.*, Tang ZY*. 2025. Religious temples are long-term refuges for old trees in human-dominated landscapes. Current Biology  35: 2994-3000.

  5. Shi C-Y, Zhang H-T*, Tang ZY*. 2025. Large-sized trees regulating the structural diversity–productivity relationships through shaping different productive processes in a tropical forest. Proc. R. Soc. B 292: 20242202. 

  6. Song SS, Yang X*, ...,  Tang ZY*. 2025. Abiotic environments prevail over plant functional traits in shaping phyllosphere fungal communities of temperate grasslands in China. ISME Communications 5: ycaf096.

  7. Zhang HT, … Tang ZY*, Density dependence of tree growth varies with temperature gradient and mycorrhizal types. Journal of Ecology doi: 10.1111/1365-2745.70158.

  8. Zhang HT, Liu TY*… Tang ZY*, Positive diversity effect on woody biomass production by promoting cell number and cell wall thickness. Plant Cell and Environment doi:10.1111/pce.70188.

  9. Zhang YQ, … Tang ZY*, Soil water, plant functional traits and their interaction jointly effected sap flow density. Agricultural and Forest Meteorology. (accepted)

  10. Zhang YQ, ..., Tang ZY*, 2025. Trees suppress growth but sustain water consumption in response to flash drought in a subtropical forest. Agricultural and Forest Meteorology 372: 110727.

  11. Zhang YW, ..., Wang T*, Tang ZY*. 2025. Unravelling Ecosystem Function Responses to Grazing Intensity though UAV-based Hyperspectral Analysis. Journal of Remote Sensing (accepted)

  12. Zuo ZJ, …, Wang Z*, Tang ZY*, Conservatism and plasticity of multiple nutrient allocation in wetland plants: insights from allometric scaling. Functional Ecology. (accepted)

  13. 宋珊珊 唐志堯* 2025. 河北塞罕壩草甸草原根際土壤真菌與植物地上生物量的關(guān)系. 植物生態(tài)學(xué)報(bào).

  14. Dong K et al., 2025. Livestock-induced changes in soil properties and microbial dominance determine soil microbial diversity in a conifer forest. Soil Ecology Letters. (accepted)

  15. Fan F. et al. 2025. Livestock-induced changes in soil properties and microbial dominance determine soil microbial diversity in a conifer forest. Soil Ecology Letters 8: 250364.

  16. Fang WJ et al., 2025. Plant community structure and environmental factors regulate the N-P stoichiometry of soil and leaf for larch forests in Northern China. Journal of Forestry Research (accepted).

  17. Li ZP et al., 2025. Human land use promotes range expansion of soil protists from temperate to subtropical regions in China. PNAS 122: e2413220122.

  18. Lv CH et al. 2025. Environmental gradients override phylogenetic effects in plant adaptation to high elevation. Plant Cell and Environment doi: 10.1111/pce.70005.

  19. Ma S. et al., 2025. Mycorrhizal dominance influences tree species richness and richness-biomass relationship in China's forests. Ecology 106: e4501.

  20. Ouyang M. et al., 2025. Field-based estimation of carbon stocks of bamboo forests across China. Journal of Geophysical Research-Biogeosciences 130: e2025JG009238.

  21. Ouyang M. et al., 2025. Constant isometric scaling of soil carbon to nitrogen in Moso bamboo-invaded evergreen broadleaf forests in subtropical China. Plant and Soil 511: 299-308.

  22. Song SS, et al. 2025. Plant functional diversity regulates the composition and diversity of soil microbial communities in temperate grasslands of northern China. Functional Ecology doi: 10.1111/1365-2435.70103.

  23. Song SS, et al. 2025. Soil properties and plant functional traits have different importance in shaping rhizosphere soil bacterial and fungal communities in a meadow steppe. mSystems https://doi.org/10.1128/msystems.00570-25.

  24. Tang R, Guo YP, Tang ZY. 2025. Intraspecific variation in leaf morphology of three widespread woody species along climatic gradients. Journal of Plant Ecology (accepted).

  25. Wang SY, Yang YM, Tang ZY, et al., 2025. Evolution of urban network patterns in the Yellow River Basin based on human mobility over 1,300 years. Applied Geography 178: 103587.

  26. Yu Q, et al., 2025. Decadal nutrient addition reveals phosphorus limitation and its adaptive mechanisms in tropical rainforests. Soil Biology and Biochemistry 211: 109976.

  27. Yu Q, et al., 2025. Field experiments and a meta‐analysis reveal a minor influence of nitrogen addition on phosphorus fractions in forests. Global Change Biology.  31:e70156. 

  28. Yuan RZ, et al. Mixed deciduous-evergreen needleleaf forests across China can be referred as a separate vegetation type. Plant Ecology (accepted)

  29. Zhang DH et al., Effects of 13-year nitrogen additions on stoichiometric relationship in the plant–soil–microbial continuum from tropical to boreal forests. Global Change Biology (accepted)

  30. Zhang DH, et al. 2025. Mycorrhizal association shapes responses of plant biomass but not soil carbon to nitrogen addition in global forests ?Forest Ecology and Management 586: 122685.

  31. Zhang ZJ et al. 2025. Significant differences in the effects of pine wilt disease invasion on plant diversity in natural and planted forests. Insects 16: 295. 

  32. 鄧瑩等. 2025. 中國(guó)灌叢葉片氮磷比 1 km 分辨率數(shù)據(jù)集. 中國(guó)科學(xué)數(shù)據(jù) 10: 2025-02-24. DOI: 10.11922/11-6035.csd.2023.0147.zh

  33. 宋珊珊 等 2025. 短期圍封對(duì)河北塞罕壩草甸草原植物功能多樣性的影響. 應(yīng)用生態(tài)學(xué)報(bào)  (accepted)

    2024

  34. Bai YH, Tang ZY*. 2024. Enhanced effects of species richness on resistance and resilience of global tree growth to prolonged drought. PNAS 121: e2410467121.

  35. Bai YH, Gheyret G*, …, Tang ZY*. 2025. Trait-based neighbourhood effects modulate the growth–weather relationships of subtropical trees. The Innovation Life 2: 100106.

  36. Zhang HT, Gheyret G*, ..., Tang ZY*. 2024. Neighborhood functional dissimilarity promotes stem radial growth by mitigating tree water deficit. National Science Review 11: nwad320. doi: 10.1093/nsr/nwad320.

  37. Zhang HT, …, Tang ZY*. 2024. Spatiotemporal variation in the negative effect of neighbourhood crowding on stem growth. Journal of Ecology 112:1140-1149. doi: 10.1111/1365-2745.14291.

  38. Zhang YQ,..., Tang ZY*. 2024. Functional diversity of neighbors mediates sap flow density and radial growth of focal trees, but in different ways between evergreen and deciduous broadleaved species. Functional Ecology 38: 1931-1943. doi: 10.1111/1365-2435.14610.

  39. Zhang YW, ... Wang T*, Tang ZY*. Satellite hyperspectral imagery reveals scale dependence of functional diversity patterns in a Qinghai-Tibetan alpine meadow. International Journal of Applied Earth Observation and Geoinformation 129: 103868.

  40. Deng Y. …, Tang ZY*, Xie ZQ*. 2024. Knowledge-based deep learning to predict vegetation carbon, nitrogen and phosphorus densities in China’s shrublands. Geophysical Research Letters e2024GL110759. doi: https://doi.org/10.1029/2024GL110759.

  41. Fang WJ, …, Tang ZY*, Fang JY*. 2024. Life forms affect beta-diversity patterns of larch forests in China. Plant Diversity 46: 49-58. doi: 10.1016/j.pld.2023.10.003.

  42. He CQ …, Tang ZY*, Fang JY*. 2024. Sampling origins and directions affect the minimum sampling area in forest plots. Journal of Vegetation Science 35: e13232. doi: 10.1111/jvs.13232.

  43. Amantai N. et al., 2024. Climate overtakes vegetation greening in regulating spatiotemporal patterns of soil moisture in arid Central Asia in recent 35 years. GIScience & Remote Sensing 60: 2185980.

  44. Song SS. et al. 2024. Precipitation variability has a weak but significant stabilizing effect on community structure. Ecosystem Health and Sustainability doi: 10.34133/ehs.0184.

  45. Ao Z. et al. 2024. A national-scale assessment of land subsidence in China's major cities. Science 384: 301-306.

  46. Hahn G et al., 2024. Global decoupling of functional and phylogenetic diversity in plant communities. Nature Ecology and Evolution doi:10.1038/s41559-024-02589-0.

  47. Hu T. et al. 2024. High-resolution mapping of grassland canopy cover in China through the integration of extensive drone imagery and satellite data. ISPRS Journal of Photogrammetry and Remote Sensing 218: 69-83.

  48. Luo A. et al., 2024. Global multifaceted biodiversity patterns, centers, and conservation needs in angiosperms. Science China Life Science doi: 10.1007/s11427-023-2430-2.

  49. Ouyang M. et al., 2024. Effects of bamboo invasion on forest structures and diameter–height allometries. Forest Ecosystems 12: 100256.

  50. Ouyang M. et al., 2024. Constant isometric scaling of soil carbon to nitrogen in Moso bamboo-invaded evergreen broadleaf forests in subtropical China. Plant and Soil doi: 10.1007/s11104-024-06986-z.

  51. Ouyang M. et al., 2024. The scaling of elemental stoichiometry and growth rate over the course of bamboo ontogeny. New Phytologist 241: 1088-1099. doi: 10.1111/nph.19408.

  52. Shen P. et al., 2024. Biodiversity buffers the response of spring leaf unfolding to climate warming. Nature Climate Change doi: 10.1038/s41558-024-02035-w

  53. Yu Q. et al. 2024. Differential responses of soil phosphorus fractions to nitrogen and phosphorus fertilization: A global meta-analysis. Global Biogeochemical Cycles doi: 10.1029/2023GB008064.

  54. Yu Q. et al. 2024. Decoupled responses of plants and soil biota to global change across the world’s land ecosystems. Nature Communications 15: 10369.

  55. Zuo Z. et al. 2024. Coordination between bioelements induce more stable macroelements than microelements in wetland plants. Ecology Letters

  56. 尼格娜熱.阿曼太 等 2024. 人工林種植和生長(zhǎng)對(duì)黃土高原生態(tài)系統(tǒng)固碳和水文調(diào)節(jié)功能的影響:基于遙感時(shí)序分析的證據(jù). 生態(tài)學(xué)報(bào)

  57. 石岳 等 2024.中國(guó)及省域碳排放、陸地碳匯及其相對(duì)減排貢獻(xiàn),1980~2020. 中國(guó)科學(xué):生命科學(xué)

  58. 俞慶水 等 2024. 10年氮磷添加對(duì)海南尖峰嶺熱帶雨林優(yōu)勢(shì)植物葉片非結(jié)構(gòu)性碳水化合物的影響. 植物生態(tài)學(xué)報(bào)

    2023

  59. Huang L, ... Yang YC*, Tang ZY*, Lindenmayer DB*. 2023. Human activities and species biological traits drive the long-term persistence of old trees in human-dominated landscapes. Nature Plants 9: 898–907.

  60. Meng YY... Tang ZY*. 2023. Spatiotemporal patterns of planted forests on the Loess Plateau between 1986 and 2021 based on Landsat NDVI time-series analysis. GIScience & Remote Sensing 60: 2185980.

  61. Amantai N. et al., 2023. Spatial–temporal patterns of interannual variability in planted forests: NPP time-series analysis on the Loess Plateau. Remote Sensing 15: 3380.

  62. 張藝偉... 唐志堯*. 2023. 高光譜遙感在植物多樣性研究中的應(yīng)用:進(jìn)展與趨勢(shì). 遙感學(xué)報(bào)  27: 2467-2483. doi: 10.11834/jrs.20211120.

  63. Cai Q. et al. 2023. Elevational Patterns of Tree Species Richness and Forest Biomass on Two Subtropical Mountains in China. Forests 14: 1337.

  64. Chen X, et al. 2023. Comparison between the stem and leaf photosynthetic productivity in Eucalyptus urophylla plantations with different age. Planta 257:56.

  65. Kang J, et al., 2023. Contrasting growth responses to drought in three tree species widely distributed in northern China. Science of the Total Environment.

  66. Schuldt A, et al. 2023. Carbon–biodiversity relationships in a highly diverse subtropical forest. Global Change Biology doi: 10.1111/gcb.16697.

  67. Tan C et al. 2023. Distribution and conservation of the Lauraceae in China. Global Ecology and  Conservation doi:

  68. Tao SL et al. 2023. A global long-term, high-resolution satellite radar backscatter data record (1992–2022C): merging C-band ERS/ASCAT and Ku-band QSCAT. Earth Syst. Sci. Data 15: 1577–1596.

  69. Tao SL et al. 2023. Little evidence that Amazonian rainforests are approaching a tipping point. Nature Climate Change 13, pages1317–1320. 

    2022

  70. Fang WJ, et al. 2022. Species richness patterns and determinants of larch forests in China.  Plant Diversity 5: 436-444.

  71. Ge JL, ..., Tang ZY*, Xie ZQ*. 2022. Depth-dependent controls over soil organic carbon stock across Chinese shrublands. Ecosystems doi: 10.1007/s10021-022-00757-6.

  72. Liu TY, Ji CJ, Tang ZY. 2022. A semi-thin section technique based cell-level anatomical approach to quantify the xylem secondary cell wall deposition and lignification process. IAWA Journal

  73. Meng YY, ..., Tang ZY*. 2022.  A planted forest mapping method based on long-term change trend features derived from dense Landsat time series in an ecological restoration region. Remote Sensing 14: 961.

  74. Wang QG, ... Tang ZY*. 2022. Ecolutionary history and climate conditions constrain the flower colours of woody plants in China. Journal of Plant Ecology 15: 196-207.

  75. Weng XX, Guo YP, Tang ZY. 2022.  Spatial-temporal dependence f the neighborhood interaction in regulating tree growth in a tropical rainforest. Forest Ecology and Management 508: 120032.

  76. Zhang HT, ..., Tang ZY*. 2022. Environment shapes tree community traits in China's forests. Journal of Vegetation Sciences 33: e13146.  doi:10.1111/jvs.13146.

  77. Zhang YW, ..., Tang ZY*. 2022. Estimating community-level plant traits in a species rich alpine meadow using UAV image spectroscopy. Remote Sensing 14: 3399.

  78. Cai GH et al. Plant-Derived lipids play a crucial role in forest soil carbon accumulation. Soil Biology and Biochemistry 168: 108645.

  79. Chen GP et al. 2022. Climate and forest attributes influence above-ground biomass of deciduous broadleaf forests in China. Journal of Ecology 111: 495-508.

  80. Feng YH, et al. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science 376: 865-868.

  81. Feng YH, et al.  Decadal lake volume changes (2003-2020) and driving forces at a global scale. Remote Sensing 14: 1032.

  82. Huang HY. et al. Effects of afforestation on soil microbial diversity and enzyme activity: a meta-analysis Geoderma 423: 115961.

  83. Guo QH, et al. Human-climate coupled changes in vegetation community complexity of China since 1980s. Earth's Future doi: 10.1029/2021EF002553.

  84. Liu YZ, et al. Classification and distribution of evergreen broad-leaved forests in Jiangxi, East China. Journal of Plant Ecology doi: 10.1093/jpe/rtac059.

  85. Liu XQ, et al. Neutral network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data. Remote Sensing of Environment 269: 112844.

  86. Ouyang M, et al. Moso bamboo (Phyllostachys edulis) invasion increases forest soil pH in subtropical China. Catena 215: 106339.

  87. Satatini FM, et al., 2022. Global patterns of local plant species richness. Nature Communications 13: 4683.

  88. Tian QX, et al. Vertical distribution of soil bacterial communities in different types along an elevation gradient. Microbial Ecology doi: 10.1007/s00248-021-01949-8.

  89. Wang CC, et al. 2022. Wuling Mountains function as a corridor for woody plant species exchange between northern and southern Central China. Frontiers in Ecology and Evolution doi: 10.3389/fevo.2022.837738.

  90. Xiong XY et al. 2022. Aboveground biomass and its biotic and abiotic modulators of a main food bamboo of the giant panda in an subalpine spruce-fir forest in southwestern China. Journal of Plant Ecology 15: 1-12. doi: 10.1093/jpe/rtab069.

  91. Yang YH, et al. 2022. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China Life Science doi: 10.1007/s11427-021-2045-5.

  92. 楊元合等 2022. 陸地生態(tài)系統(tǒng)碳源匯特征及其對(duì)實(shí)現(xiàn)碳中和目標(biāo)的貢獻(xiàn). 中國(guó)科學(xué)-生命科學(xué)

  93. Yu QS, et al. 2022. Foliar phosphorus allocation and photosynthesis reveal plants’ adaptative strategies to phosphorus limitation in tropical forests at different successional stages. Science of the Total Environment 846: 157456. doi: 10.1016/j.scitotenv.2022.157456

  94. Zhang JH, et al. Nutrient resorption responses of plant life forms to nitrogen addion in temperate shrublands. Ecosphere 10.1002/ecs2.4113.

  95. 王國(guó)宏等 2022.《中國(guó)植被志》研編規(guī)范的若干說明、補(bǔ)充與修訂.  植物生態(tài)學(xué)報(bào)  46: 368-372.

    2021

  96. Feng YH, ..., Tang ZY*. 2021.  Assessing the effectiveness of global protected areas based on the difference in differences model. Ecological Indicators 130: 108078.

  97. Guo YP, ..., Tang ZY*. 2021. Environmental constraints on the inter-genus variation in the scaling relationship between leaf nitrogen and phosphorus concentrations. Journal of Plant Ecology 14: 616-627.

  98. Gheyret G, ..., Tang ZY*. 2021. Radial growth response of trees to seasonal soil humidity in a subtropical forest. Basic and Applied Ecology 55: 74-86.

  99. Li Y, Yan YJ, Tang ZY*,…, Yao YJ*. 2021. Conserving the Chinese caterpillar fungus under climate change. Biodiversity and Conservation 30: 547-550.

  100. Zhang JH, ...,  Tang ZY*. 2021. Responses of litter decomposition and nutrient dynamics to nitrogen addition to temperate shrublands of North China. Frontiers in Plant Sciences 11: 618675.

  101. Zhang YW, Guo YP, Tang ZY* et al. 2021. Patterns of nitrogen and phosphorus pools in terrestrial ecosystems in China. Earth System Science Data 13: 5337-5351.

  102. Cai HY, et al. 2021. Geographical patterns in phylogenetic diversity of Chinese woody plants and its application for conservation planning. Diversity and Distribution 27: 179-194.

  103. Cai Q, et al. 2021. The relationship between niche breadth and range size of beech (Fagus) species worldwide. Journal of Biogeography 48: 1240-1253.

  104. Feng YH, et al. 2021. Reduced resilience of terrestrial ecosystems locally is not reflected on a global scale. Communications Earth & Environment. 2: 88.

  105. Ouyang M. et al. 2021. A field-based estimation of moso bamboo forest biomass in China. Forest Ecology and Management 505: 119885.

  106. Schnabel F.,et al. 2021. Hydraulic diversity stabilizes productivity in a large scale subtropical tree diversity experiment. Science Advances 7: eabk1643.

  107. Sun YF, et al. 2021. Global patterns and climatic drivers of above- and belowground net primary productivity in grasslands. Science China Life Sciences 64: 739-751.

  108. Tian QX, et al. 2021. Soil pH and organic carbon properties drive soil bacterial communities in surface and deep layers along an elevational gradient. Frontiers in Microbiology 12: 646142.

  109. Trogisch T, et al., 2021. The significance of tree-tree interactions for forest ecosystem functioning. Basic and Applied Ecology 55: 33-52.

  110. Wang YP, et al., 2021. Allien woody plant invasions in natural forests across China. Journal of Plant Ecology 14: 749-756.

  111. Yi SJ, et al. 2021. Biodiversity, environmental context and structural attributes as drivers of aboveground biomass in shrublands at the middle and lower reaches of the Yellow River Basin. Science of Total Environment 774: 145198.

  112. 郭焱培,  ..., 唐志堯*. 2021. 中國(guó)北方典型灌叢的分布特征及氣候限制. 中國(guó)科學(xué): 生命科學(xué) 51: 346.

    2020

  113. Bai YH, …, Tang ZY?. 2020. Conservation status of Primulaceae, a plant family with high endemism, in China. Biological Conservation 248: 108675.

  114. Fang WJ, ..., Tang ZY*, Fang JY*. 2020. The relationships among structure variables of larch forests in China. Forest Ecosystems 7: 61.

  115. Ge JL, Xu WT, Liu Q, Tang ZY*, Xie ZQ*, 2020. Patterns and environmental controls of soil organic carbon density in Chinese shrublands. Geoderma 363: 114161.

  116. Gheyret G, Guo YP, Fang JY, Tang ZY*. 2020. Latitudinal and elevational patterns of phylogenetic structure in forest communities in China’s mountains. Science China: Life Science 63: 1895-1904.

  117. Gheyret G, Mohammat A, Tang ZY*. 2019. Elevational patterns of temperature and humidity in the middle Tianshan Mountain area in Central Asia. Journal of Moutain Science 12: 397-409.

  118. Guo YP, …, Tang ZY*, 2020. The community-level scaling relationship between leaf nitrogen and phosphorus exhibits vegetation’s strategies for nutrient utilization. Journal of Ecology 108: 1276-1286.

  119. Guo YP, …, Tang ZY*. 2020. Climate and biomass together control the vertical distribution of soil carbon, nitrogen and phosphorus in shrublands in China. Plant and Soil 456: 15-26.

  120. Liu Z, Wang F*, Tang ZY*, Tang JT. 2020. Predictions and driving factors of production-based CO?2 emissions in Beijing, China. Sustainable Cities and Society 53: 101909.

  121. Zhang SY, …, Tang ZY?. 2020. Representativeness of threatened terrestrial vertebrates in nature reserves in China. Biological Conservation 246: 108599.

  122. He NP, et al. 2020. Plant trait networks: improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution 35: 908-918.

  123. Li YQ, et al. 2020. Leaf size of woody dicots predicts ecosystem primary productivity. Ecology Letters 23: 1003-1013.

  124. Song SS, et al. 2020. Long-term grazing exclusion reduces species diversity but increases community heterogeneity in an alpine grassland. Frontiers in Ecology and Evolution 8: 66.

  125. Su YJ, et al., 2020. An updated Vegetation Map of China (1:1000000). Science Bulletin 65: 1125-1136.

  126. Zhu JX, et al., 2020. Increasing soil carbon stocks in eight permanent forest plots in China. Biogeosciences 17: 715-726.

  127. 張新悅, ..., 唐志堯*. 2020. 1982-2014年華北及周邊地區(qū)生長(zhǎng)季NDVI變化及其驅(qū)動(dòng)因子. 北京大學(xué)學(xué)報(bào) 57: 153-161.

  128. 李熠等. 2020. 物種分布模型在大型真菌紅色名錄評(píng)估及保護(hù)中的應(yīng)用: 以冬蟲夏草為例. 生物多樣性 28: 99–106.

  129. 張恒等. 2020. 近 30 年京津冀地區(qū)湖泊面積的變化. 北京大學(xué)學(xué)報(bào)(自然科學(xué)版) doi: 10.13209/j.0479-8023.2019.123.

  130. 方精云等. 2020. 《中國(guó)植被志》的植被分類系統(tǒng)、植被類型劃分及編排體系. 植物生態(tài)學(xué)報(bào) 44: 96-110.

  131. 王國(guó)宏等. 2020.《中國(guó)植被志》研編內(nèi)容與規(guī)范. 植物生態(tài)學(xué)報(bào) 2020, 44 (2): 128–176.

  132. 郭柯等. 2020. 中國(guó)植被分類系統(tǒng)修訂方案. 植物生態(tài)學(xué)報(bào) 44: 111-127.

    2019

  133. Guo YP, …, Tang ZY*, 2019. Increasing water availability and facilitation weaken biodiversity–biomass relationships in shrublands. Ecology 100: e02624.

  134. Yan YJ, Tang ZY*. 2019. Protecting endemic plants on the Tibetan Plateau under future climate change: migration matters. Journal of Plant Ecology 12: 962-971.

  135. Zhang Q, ..., Tang ZY*, Xie ZQ*, 2019. C: N: P stoichiometry of Ericaceae species in shrubland biomes across Southern China: influences of climate, soil and species identity. Journal of Plant Ecology 12: 346-357.

  136. Bruelheide H, et al. 2019. sPlot – a new tool for global vegetation analyses. Journal of Vegetation Sciences 30: 161-186.

  137. Feng YH, et al. 2019. Changes in the trends of vegetation net primary productivity in China between 1982 and 2015. Environment Research Letters 14:124009.

  138. He HL, et al. 2019. Altered trend in carbon uptake China's terrestrial ecosystems under the enhanced summer monsoon and warming hiatus.National Science Review 6: 505-514.

  139. Tian D, et al. 2019. A global database of paired leaf nitrogen and phosphorus concentrations of terrestrial plants. Ecology 100: e02812.

  140. Wang QG, et al. 2019. Analyzing tree neighborhood interactions in ecotones of montane evergreen and deciduous forests in China. Journal of Vegetation Sciences 30: 654-663.

  141. Xiao J, et al. 2019. Responses of four dominant dryland plant species to climate change in the Junggar Basin, north-west China. Ecology and Evolution 9: 13596-13607.

  142. Zhang H, et al., 2019. High-resolution vegetation mapping using eXtreme Gradient Boosting based on extensive features. Remote Sensing 11: 1505.

  143. 張雪皎, ..., 唐志堯*. 2019. 中國(guó)北方櫟屬樹木多度分布及其對(duì)未來(lái)氣候變化的響應(yīng). 植物生態(tài)學(xué)報(bào)  43: 774-782.

  144. 唐志堯, 劉鴻雁. 2019. 華北地區(qū)植物群落分布格局及構(gòu)建機(jī)制. 植物生態(tài)學(xué)報(bào) 43: 729-731.

    2018

  145. Tang ZY#, Xu WT#, Zhou GY#, et al. 2018. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. PNAS 115: 4033-4038.

  146. Tang XL#, Zhao X#, Bai YF#, Tang ZY#, et al. 2018. Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey. PNAS 115: 4021-4026.

  147. Bruelheide H, et al. 2018. Global trait-environment relationships of plant communities. Nature Ecology and Evolution 2: 1907-1918.

  148. Chen SP, et al. 2018. Plant diversity enhances productivity and soil carbon storage. PNAS 115: 4027-4032.

  149. Huang YY, et al., 2018. Impacts of biodiversity in a large-scale subtropical forest experiment. Science 362: 80-83.

  150. Jiang ZH, et al. 2018. A trait-based approach reveals the importance of biotic filter on elevational herb richness pattern. Journal of Biogeography 45:2288–2298.

  151. Liu XJ, et al. 2018. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. Royal Society B 285: 20181240.

  152. Lu F, et al. 2018. The effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. PNAS 115: 4039-4044.

  153. Schuldt A, et al. 2018. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nature Communications 9: 2989.

  154. Shrestha N, et al. 2018. Global patterns of Rhododendron diversity: The role of evolutionary time and diversification rates. Global Ecology and Biogeography 27: 913-924.

  155. Tian D, et al. 2018. Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. National Science Review 5: 728-739.

  156. Zhang Q, et al. 2018. Nitrogen and phosphorus concentrations and allocation strategies among shrub organs: the effects of plant growth forms and nitrogen fixation type. Plant and Soil 427: 305-319.

  157. Zhao H, et al. 2018. Spatial patterns and environmental factors influencing leaf carbon content in the forests and shrublands of China. Journal of Geographical Science 28: 791-801.

  158. 唐志堯等. 2018. 遙感在生物多樣性研究與保護(hù)中的應(yīng)用. 生物多樣性 26: 807-818.

  159. 張則瑾,..., 唐志堯*. 2018. 中國(guó)極小種群野生植物的保護(hù)現(xiàn)狀評(píng)估. 生物多樣性 26: 572–577.

    2017

  160. Chi XL, ..., Tang ZY*. 2017. Seasonal characteristic and determinants of tree growth in a Chinese subtropical forest. Journal of Plant Ecology 10: 4-12.

  161. Chi XL, ..., Tang ZY*, Huang LQ*. 2017. Threatened medicinal plants in China: distributions and conservation priorities. Biological Conservation 210: 89-95.

  162. Guo Q, ..., Tang ZY*. 2017. Asymemetric competition for light varies across functional groups. Journal of Plant Ecology 10: 74-80.

  163. Guo YP,…, Tang ZY*. 2017. Legume shrubs are more nitrogen-homeostatic than non-legume shrubs. Frontiers in Plant Sciences 8: 1662.

  164. Yan YJ, …, Tang ZY*, Yao YJ*. 2017. Range shifts in response to climate change of Ophiocordyceps sinensis, a fungus endemic to the Tibetan Plateau. Biological Conservation 206: 143-150.

  165. Eigenbrod F#, Tang ZY#*, et al. 2017. Spatial covariance of ecosystem services and poverty in China. International J. Biodiversity Science, Ecosystem Services & Management 131: 422-433.

  166. Cai Y, et al. 2017. Different composition and distribution patterns of mineral‐protected versus hydrolyzable lipids in shrubland soils. Journal of Geophysical Research- Biogeoscience 122: 2206-2218.

  167. Eziz A, et al. 2017. Drought effect on plant biomass allocation: A meta-analysis. Ecology and Evolution 7: 11002-11010.

  168. Wang SY, et al. 2017. Response of spatial vegetation distribution in China to climate changes since the Last Glacial Maximum (LGM). PLoS ONE 11: e0175742.

  169. Yan ZB, et al. 2017. An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants. Annals of Botany 120: 937-942.

  170. Zhu JX, et al. 2017. Carbon stocks and changes of dead organic matter in China`s forests. Nature Communications 8: 151.

  171. 郭焱培, ..., 唐志堯*. 2017. 中國(guó)北方溫帶灌叢生態(tài)系統(tǒng)碳、氮、磷儲(chǔ)量. 植物生態(tài)學(xué)報(bào) 41: 14-21.

  172. 楊弦, ..., 唐志堯*. 2017.中國(guó)北方溫帶灌叢生物量的分布及其與環(huán)境的關(guān)系. 植物生態(tài)學(xué)報(bào) 41: 22-30.

  173. 謝宗強(qiáng), 唐志堯. 2017. 中國(guó)灌叢生態(tài)系統(tǒng)碳儲(chǔ)量的研究. 植物生態(tài)學(xué)報(bào) 41: 1-4.

  174. 張建華等. 2017. 北京東靈山地區(qū)常見灌叢生長(zhǎng)及凋落物生產(chǎn)對(duì)氮添加的響應(yīng). 植物生態(tài)學(xué)報(bào) 41: 71-80.

  175. 張建華等.  2017. 氮添加對(duì)北京東靈山地區(qū)灌叢土壤呼吸的影響. 植物生態(tài)學(xué)報(bào) 41: 81-94.

    2016

  176. Dallimer M#, Tang ZY#, et al. 2016. The extent of shifts in vegetation phenology between rural and urban areas within a human-dominated region. Ecology and Evolution 6: 1942-1953.

  177. Yang X, …, Tang ZY*. 2016. Variations of leaf N, P concentrations in shrubland biomes across Northern China: phylogeny, climate and soil. Biogeosciences 13: 4429.

  178. Castro-Izaguirre N, et al. 2016. Tree Diversity Enhances Stand Carbon Storage but Not Leaf Area in a Subtropical Forest. PLoS ONE 11: e0167771.

  179. Lin L,  et al. 2015. Range expansion and habitat shift trigered elevated diversification of the rice genus (Oriza, Poaceae) during the Pleistocene. BMC Evolutionary Biology 15: 182.

  180. Tao SL, et al. 2016. Spatial scale and pattern dependences of aboveground biomass estimation from satellite images: a case study of the Sierra National Forest, California. Landscape Ecology 31: 1711-1723.

    2015

  181. Chi XL, Tang ZY*, et al. 2015. Effects of size, neighbors and site conditions on tree growth in a subtropical evergreen and deciduous broad-leaved mixed forest. Ecology and Evolution 5: 5149-5161.

  182. Qiao XJ, Jabot F, Tang ZY*, et al. 2015. A latitudinal gradient in tree community assembly processes evidenced in forests of China. Global Ecology & Biogeography 24: 314-323.

  183. Liu YN, Tang ZY*, et al. 2015. Contribution of environmental filtering and dispersal limitation to species turnover of temperate deciduous broadleaved forests in China. Applied Vegetation Science 18: 34-42.

  184. Zhang JH, Tang ZY*, et al. 2015. Resorption efficiency of leaf nutrients in woody plants on Mt. Dongling of Beijing, Northern China. Journal of Plant Ecology 8: 530-538.

  185. Zhang JH, …, Tang ZY*. 2015. Effects of nitrogen addition on nitrogen resorption in temperate shrublands in northern China. PLoS ONE 10: e0130434.

  186. Zhang ZJ, …, Tang ZY*. 2015. Distribution and conservation of threatened plants in China. Biological Conservation 192: 454-460.

  187. Zhang ZJ, …, Tang ZY*. 2015. Distribution and conservation of orchid species richness in China. Biological Conservation 181: 64-72.

  188. Qiao XJ, et al. 2015. Beta diversity determinants in Badagongshan, a subtropical forest in central China. Scientific Reports 5: 17043.

  189. Tao SL, et al. 2015. Rapid loss of lakes on the Mongolian Plateau. PNAS 112: 2281-2286.

  190. Wu X, et al. 2015. The relationship between species richness and biomass changes from boreal to subtropical forests in China. Ecography 38: 602-613.

    2014

  191. Chi XL, Tang ZY*, Fang JY. 2014. Patterns of phylogenetic beta diversity in China’s grasslands in relation to geographic and environmental distances. Basic and Applied Ecology 15: 415-426.

  192. Yang X, Tang ZY*, et al. 2014. Scaling of nitrogen and phosphorus across plant organs in shrubland biomes across Northern China. Scientific Reports 4: 5448.

    2013

  193. Yan YJ, Yang X, Tang ZY*. 2013. Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau. Ecology and Evolution 3: 4584-4595.

  194. Barrufol M, et al. 2013. Biodiversity promotes tree growth during succession in subtropical forest. PLoS ONE 8: e 81246.

  195. Chen YH, et al. 2013. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 36: 178-184.

  196. Li LP, et al. 2013. Species richness patterns and water-energy dynamics in the drylands of Northwest China. PLoS ONE 8: e66450.

  197. 趙廣華, ..., 唐志堯*. 2013. 中國(guó)國(guó)家級(jí)陸地自然保護(hù)區(qū)分布及其與人類活動(dòng)和自然環(huán)境的關(guān)系. 生物多樣性 21: 658-665.

  198. 方精云等. 2013. 生態(tài)學(xué)家看生態(tài)文明. 中國(guó)科學(xué)院院刊28: 182-188.

    2012

  199. Qiao XJ, Tang ZY*, et al. 2012. Effects of community structure on the species -area relationship in China’s forests. Ecography 35: 1117-1123.

  200. Wang SP, Tang ZY*, et al. 2012. Influences of species pool and local processes on the taxonomic structure of woody plant communities in China’s mountains. Ecography 35: 1168-1175.

  201. Tang ZY, et al. 2012. Patterns of plant beta-diversity along elevational and latitudinal gradients in mountain forests of China. Ecography 35: 1083-1091.

  202. Tang ZY, et al. 2012. Geography, environment, and spatial turnover of species in China’s grasslands. Ecography 35: 1103-1109.

  203. Fang JY, et al..2012. Forest community survey and the structural characteristics of forests in China. Ecography 35: 1059-1071.

  204. Fang JY, et al. 2012. Multi-scale patterns of forest structure and species composition in relation to climate in northeast China. Ecography 35:1072-1082.

  205. Fang JY, et al. 2012. Large-scale patterns of tree species richness and the metabolic theory of ecology. Global Ecology and Biogeography 21:508-512.

  206. Qiao XJ, et al. 2012. What causes geographical variation in the species-area relationships? A test from forests in China. Ecography 35: 1110-1116.

  207. Shen ZH, et al. 2012. Geographical patterns of community-based tree species richness in Chinese mountain forests: the effects of contemporary climate and regional history. Ecography 35: 1134-1146.

  208. Wang XP, et al. 2012. Relative influence of regional species richness vs. local climate on local species richness in China’s forests. Ecography 35: 1176-1184.

  209. Wang ZH, et al. 2012. Relative role of contemporary environment versus history in shaping diversity patterns of China’s woody plants. Ecography 35: 1124-1133.

  210. Wang ZH, et al. 2012. Geographical patterns in the beta diversity of China’s woody plants: the influence of space, environment and range size. Ecography 35: 1192-1202.

    2011

  211. Dallimer M#, Tang ZY#, et al. 2011. Temporal changes in greenspace in a highly urbanized region. Biology Letters 7:763-766.

  212. Tang ZY*, et al. 2011. Effectiveness of protected areas in maintaining plant production. PLoS ONE 6: e19116.

  213. Shi L, et al. 2011. The changes in China’s forests: an analysis using the forest identity. PLoS ONE 6: e20778.

  214. Wang ZH, et al. 2011. Patterns, determinants and models of woody plant diversity in China. Proc. Royal Society B-Biol. Sci. 278: 2122-132.

  215. 池秀蓮, 唐志堯*. 2011. 面積、溫度以及分布區(qū)限制對(duì)物種豐富度海拔格局的影響:以秦嶺太白山為例. 植物生態(tài)學(xué)報(bào) 35: 362-370.

  216. 李利平, ..., 唐志堯*. 2011. 新疆野生維管束植物物種豐富度分布格局的水熱解釋. 干旱區(qū)研究 28: 25-30.

  217. 李利平, 尹林克, 唐志堯*. 2011. 新疆野生動(dòng)植物物種豐富度的分布格局. 干旱區(qū)研究 28: 1-9.

  218. 李利平等. 2011. 新疆山地針葉林植物物種組成與豐富度研究.干旱區(qū)研究 28:41-46.

  219. 李利平等, 2011. 方精云新疆伊犁地區(qū)野果林的群落特征及保護(hù). 干旱區(qū)研究 28: 60-66.

  220. 李利平等. 2011. 新疆山地針葉林的群落結(jié)構(gòu)及其影響因素. 干旱區(qū)研究 28: 31-39.

  221. 喬秀娟等. 2011. 天山南北坡植物種-面積關(guān)系.干旱區(qū)研究 28: 54-59.

    2010

  222. Yang YH,  et al. 2010. Soil inorganic carbon stock in the Tibetan alpine grasslands. Global Biogeochemical Cycles 24: GB4022.

  223. 44. 劉懌寧, 喬秀娟, 唐志堯. 2010. 尋求生物多樣性分布格局的形成機(jī)制. 自然雜志 32: 260-266.

    2009

  224. Fang JY, et al. 2009. Scenario analysis on the global carbon emission reduction goal proposed in the declaration of the G8 Summit. Science in China D 52: 1694-1702.

  225. Wang XP, et al. 2009. Relative importance of climate vs local factors in shaping the regional patterns of forest plant richness across northeast China. Ecography 32: 133-142.

  226. Wang ZH, et al. 2009. Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America. PNAS 106: 13388-13392.

  227. 唐志堯等. 2009. 生物群落的種—面積關(guān)系. 生物多樣性 17: 549-559.

  228. 唐志堯等. 2009.生物多樣性分布格局的地史成因假說. 生物多樣性 17: 635- 643.

  229. 方精云等. 2009. “八國(guó)集團(tuán)”2009意大利峰會(huì)減排目標(biāo)下的全球碳排放情景分析. 中國(guó)科學(xué)D輯 39: 1339-1346.

  230. 陳雅涵等. 2009. 中國(guó)自然保護(hù)區(qū)分布現(xiàn)狀及合理布局的探討. 生物多樣性 17: 664-674.

  231. 王志恒等. 2009. 物種多樣性地理格局的能量假說. 生物多樣性 17: 613-624.

  232. 方精云等. 2009. 局域和區(qū)域過程共同控制著群落的物種多樣性:種庫(kù)假說. 生物多樣性 17: 605-612.

  233. 林鑫等. 2009. 中國(guó)陸棲哺乳動(dòng)物物種豐富度的地理格局及其與環(huán)境因子的關(guān)系. 生物多樣性 17: 652-663.

  234. 王襄平等. 2009. 中域效應(yīng)假說:模型、證據(jù)和局限性. 生物多樣性 17: 568-578

  235. 王志恒等. 2009. 生態(tài)學(xué)代謝理論: 基于個(gè)體新陳代謝過程解釋物種多樣性的地理格局. 生物多樣性 17: 625-634.

  236. 方精云等. 2009.植物群落清查的主要內(nèi)容、方法和技術(shù)規(guī)范. 生物多樣性 17: 533-548.

  237. 方精云等. 2009. 關(guān)于2009哥本哈根氣候談判的若干建議.中國(guó)科學(xué)院報(bào)國(guó)務(wù)院建議書.

    2007

  238. Walter GR, et al. 2007. Palms tracking climate change. Global Ecology and Biogeography 16: 801-809.

  239. Wang ZH, et al. 2007. Altitudinal patterns of seed plant richness in the Gaoligong Mountains, southeast Tibet, China. Diversity and Distributions 13: 845-854.

  240. Wu XP, et al. 2007. Land cover dynamics of different topographic conditions in Beijing, China. Frontiers in Biology in China 2: 463-473.

    2006

  241. Tang ZY, Wang ZH, Zheng CY, Fang JY. 2006. Biodiversity in China’s mountains. Frontiers in Ecology and the Environment 4: 347-352.

  242. Tang ZY*, Fang JY. 2006. Temperature variation along the northern and southern slopes of Mt. Taibai, China. Agricultural and Forest Meteorology 139: 200-207.

  243. Wang XP, et al. 2006. Climatic control of primary forest structure and DBH-height allometry in NE China. Forest Ecology and Management 234: 264-274.

  244. Zhao SQ, et al. 2006. Ecological consequences of rapid urban expansion: Shanghai, China. Frontiers in Ecology and the Environment 4: 341-346.

  245. Zhao SQ, et al. 2006. Patterns of fish species richness in China's lakes. Global Ecology and Biogeography 15: 386-394.

  246. Zhao SQ, et al. 2006. The relationships between terrestrial vertebrate species richness in China's nature reserves and environmental variables. Canadian Journal of Zoology 84: 1368-1374.

  247. Zhao SQ, et al. 2006. Relationships between species richness of vascular plants and terrestrial vertebrates in China: analyses based on data of nature reserves. Diversity and Distributions 12:189-194.

  248. 吳曉莆等. 2006. 北京地區(qū)不同地形條件下的土地覆蓋動(dòng)態(tài). 植物生態(tài)學(xué)報(bào) 30:239-251

    2005

  249. Zhao SQ, et al. 2005. The 7-Decade Degradation of a Large Freshwater Lake in Central Yangtze River, China. Environmental Science and Technology 39: 431-436.

  250. 戴君虎等. 2005. 五臺(tái)山高山帶植被對(duì)氣候變化的響應(yīng). 第四紀(jì)研究 25: 216-223.

  251. 劉鴻雁, 唐志堯, 戴君虎, 谷洪濤. 2025. 第四章 高山樹木的生理生態(tài)特征. 載 崔海亭等著 山地生態(tài)學(xué)與高山林線研究. 北京: 科學(xué)出版社

    2004

  252. 唐志堯等. 2004. 秦嶺太白山木本植物多樣性的梯度格局及環(huán)境解釋. 生物多樣性 12: 115-122.

  253. 唐志堯, 方精云. 2004. 植物物種多樣性的垂直分布格局. 生物多樣性 12: 20-28.

  254. 唐志堯, 柯金虎. 2004. 秦嶺牛背梁植物多樣性垂直分布格局. 生物多樣性 12: 108-114.

  255. 方精云等. 2004. “中國(guó)山地植物物種多樣性調(diào)查計(jì)劃”及若干技術(shù)規(guī)范. 生物多樣性 12: 5-10.

    2003

  256. Zhao SQ et al. 2003. Lake restoration from impoldering: impact of landcoversion on riparian landscape in Honghu Lake area, Central Yangtze. Agriculture, Ecosystems and Environment 95: 111-118.

  257. 戴君虎等. 2003.太白山樹木年輪寬度資料對(duì)過去氣候要素的重建. 第四紀(jì)研究 23: 428-435.

  258. 陳昌篤 張立運(yùn) 海鷹  唐志堯 論北疆古爾班通古特沙漠植物多樣性在中國(guó)沙漠中的獨(dú)特地位. 載 楊旭主編“中國(guó)科技發(fā)展精典文庫(kù)”. Pp 232-235. 中國(guó)言實(shí)出版社. 2003.

    2002

  259. Liu HY, et al. 2002. Larch timberline and its development in North China. Mountain Research and Development 22: 359-367.

  260. 劉鴻雁等, 2002. 中國(guó)東部暖溫帶高山林線喬木的光合作用及其與環(huán)境因子的關(guān)系. 山地學(xué)報(bào) 20: 32-36.

    2001

  261. Fang JY, et al. 2001. Interannual variability in net primary production and precipitation. Science 293: 1723.

  262. 方精云等. 2001. 生物生產(chǎn)力的"4P"概念、估算及其相互關(guān)系. 植物生態(tài)學(xué)報(bào) 25: 414-419.

  263. 戴君虎等. 2001. 太白山高山帶環(huán)境特征. 山地學(xué)報(bào) 19: 299-305

  264. 趙淑清等. 2001. 洪湖湖區(qū)土地利用/ 土地覆蓋時(shí)空格局研究. 應(yīng)用生態(tài)學(xué)報(bào) 12: 721-725.

    2000

  265. Tang ZY et al. Landscape structures of Central Yangtze region, China. In "Proceedings of International Symposium on Remote Sensing 2000". Korea Society of Remote Sensing Publications, Seoul. pp 481-490.

    1999

  266. Cui HT, et al. 1999. Stability of alpine timberline ecotone on Taibai Mountain, China. Journal of Environmental Sciences 11: 207-210.

  267. 胡金明, 唐志堯. 1999. 中國(guó)沙塵暴時(shí)空特征及人類活動(dòng)對(duì)其發(fā)展趨勢(shì)的影響. 自然災(zāi)害學(xué)報(bào) 8: 49-56.

  268. 唐志堯等. 1999. 太白山高山林線植被的數(shù)量分析. 山地學(xué)報(bào) 17: 294-299.


松阳县| 吉木萨尔县| 长岭县| 平原县| 昌都县| 平昌县| 金乡县| 长海县| 津市市| 丰原市| 汶上县| 奉化市| 肥东县| 勃利县| 微山县| 苏尼特左旗| 奈曼旗| 报价| 江阴市| 萍乡市| 长乐市| 华安县| 台安县| 双柏县| 达州市| 武城县| 望江县| 潞城市| 连平县| 济源市| 长子县| 阳江市| 忻城县| 澜沧| 泗水县| 黄陵县| 扬州市| 资源县| 游戏| 嘉荫县| 佛山市|