教師主頁
- 曹廣忠
- 曹軍
- 柴彥威
- 陳彥光
- 陳耀華
- 陳效逑
- 程和發(fā)
- 楚建群
- 戴林琳
- 鄧輝
- 董豫贛
- 付曉芳
- 方海
- 方精云
- 馮長(zhǎng)春
- 馮健
- 傅伯杰
- 高艷
- 宮彥萍
- 韓茂莉
- 賀燦飛
- 賀金生
- 胡建英
- 華方圓
- 胡燮
- 黃崇
- Kazuo Isobe
- 吉成均
- 賈小新
- 金鑫
- 李宜垠
- 李有利
- 李本綱
- 李喜青
- 李雙成
- 林堅(jiān)
- 劉耕年
- 劉文新
- 劉峻峰
- 劉宇
- 劉鴻雁
- 劉濤
- 劉燕花
- 劉剛
- 劉煜
- 劉雪萍
- 劉茂甸
- 劉萍
- 盧曉霞
- 陸雅海
- 馬亮
- 馬建民
- 馬燕
- 蒙吉軍
- 莫多聞
- 蒙冰君
- PHILIPPE CIAIS
- 彭建
- 彭書時(shí)
- 樸世龍
- 闕維民
- 宋宛儒
- 沈文權(quán)
- 沈澤昊
- 沈國(guó)鋒
- 宋峰
- 陶勝利
- 唐曉峰
- 唐志堯
- 唐艷鴻
- 陶澍
- 童昕
- 李婷婷
- 王仰麟
- 王紅亞
- 王志恒
- 王娓
- 王少鵬
- 王旭輝
- 王學(xué)軍
- 王喜龍
- 萬祎
- 王愔
- 王長(zhǎng)松
- 王開存
- 王昀
- 吳必虎
- 吳健生
- 吳龍峰
- 吳林蔚
- 謝建民
- 徐福留
- 許文君
- 姚蒙
- 于佳鑫
- 楊小柳
- 尹燕平
- 陰劼
- 喻航
- 曾輝
- 張家富
- 張照斌
- 趙鵬軍
- 趙昕奕
- 鄭成洋
- 周力平
- 周豐
- 朱東強(qiáng)
- 朱彪
- 朱晟君
- 朱丹
- 朱江玲
- 張堯
- 張新平
- 張璐瑤
- 趙卡娜
- 汪淼
- 袁文平
- 吳英迪
- 鐘奇瑞
- 劉建寶
- 楊卉
- 張一凡
- 李梅
- 杜世宏
- 秦少杰
- 張修遠(yuǎn)
- 楊晨
- 金哲儂
- 張致杰
- 連旭
- 汪哲成
個(gè)人簡(jiǎn)歷
汪哲成
職稱:助理教授,研究員
研究方向:地理空間智能,能源地理,氣候韌性
通訊地址:北京大學(xué)城市與環(huán)境學(xué)院大樓
zhecheng@pku.edu.cn
汪哲成,北京大學(xué)城市與環(huán)境學(xué)院信息地理系研究員、助理教授、博雅青年學(xué)者。2016年本科畢業(yè)于清華大學(xué),2023年1月博士畢業(yè)于斯坦福大學(xué),獲土木與環(huán)境工程博士學(xué)位與計(jì)算機(jī)科學(xué)博士輔修學(xué)位,導(dǎo)師為Ram Rajagopal教授與Arun Majumdar院士。之后繼續(xù)在斯坦福從事博士后研究(Human-Centered AI Postdoctoral Fellow)。工作形成了“地理空間智能模型研發(fā)->地理大數(shù)據(jù)構(gòu)建->能源地理知識(shí)發(fā)現(xiàn)與政策啟示”的研究體系,以一作/共同一作/通訊作者在Nature Energy、Joule (2篇)、Nature Communications與AAAI等國(guó)際知名期刊與會(huì)議上發(fā)表多篇論文,部分被選為封面文章。研究成果被MIT Technology Review、The Hill等媒體廣泛報(bào)道,并被Google、PG&E、Breakthrough Energy等多家公司使用。現(xiàn)擔(dān)任多個(gè)Nature子刊與Cell子刊審稿人。曾獲Stanford Interdisciplinary Graduate Fellowship。
更多詳情見網(wǎng)站:https://wangzhecheng.github.io
目前正在尋找志同道合的博士生、博士后與科研助理加入課題組。目前尚有一個(gè)2026年秋季入學(xué)的博士生名額(申請(qǐng)-考核制博士或碩轉(zhuǎn)博),有意向者請(qǐng)盡快郵件聯(lián)系。也歡迎計(jì)劃2027年或之后讀博的學(xué)生提前聯(lián)系、進(jìn)組科研。此外,課題組長(zhǎng)期招收博士后(包括支持申請(qǐng)北大博雅博士后)與科研助理。
本人有豐富的指導(dǎo)學(xué)生經(jīng)驗(yàn),曾指導(dǎo)的學(xué)生或在頂尖學(xué)校實(shí)驗(yàn)室繼續(xù)開展研究,或進(jìn)入Waymo、Google X等公司工作。正在尋找志同道合的博士生、博士后與科研助理加入課題組。目前尚有一個(gè)2026年秋季入學(xué)的博士生名額(申請(qǐng)-考核制博士或碩轉(zhuǎn)博),有意向者請(qǐng)盡快郵件聯(lián)系。也歡迎計(jì)劃2027年或之后讀博的學(xué)生提前聯(lián)系、進(jìn)組科研。此外,課題組長(zhǎng)期招收博士后(包括支持申請(qǐng)北大博雅博士后)與科研助理。
地理空間智能與信息系統(tǒng):適用于遙感、街景等地理大數(shù)據(jù)的多模態(tài)基礎(chǔ)模型;地理空間推理;基于地理空間智能的信息共享系統(tǒng)與可信數(shù)據(jù)空間等。
能源地理與氣候韌性:利用地理空間智能、計(jì)量經(jīng)濟(jì)學(xué)、能源系統(tǒng)建模等方法,探索“能源-氣候-社會(huì)”復(fù)雜聯(lián)系及其時(shí)空異質(zhì)性,為因地制宜制定政策提供可解釋的參考依據(jù),以加速碳中和進(jìn)程并提升“基礎(chǔ)設(shè)施-人類”耦合系統(tǒng)的韌性。
代表性論文
Zhecheng Wang, Michael Wara, Arun Majumdar, and Ram Rajagopal (2023). Local and Utility-Wide Cost Allocations for a More Equitable Wildfire-Resilient Distribution Grid. Nature Energy. (Featured as cover).
Zhecheng Wang, Marie-Louise Arlt, Chad Zanocco, Arun Majumdar, and Ram Rajagopal (2022). DeepSolar++: Understanding Residential Solar Adoption Trajectories with Computer Vision and Technology Diffusion Models. Joule.
Jiafan Yu*, Zhecheng Wang*, Arun Majumdar, and Ram Rajagopal (2018). DeepSolar: A Machine Learning Framework to Efficiently Construct a Solar Deployment Database in the United States. Joule. (Featured as cover). (* Equal contribution)
Zhecheng Wang, Arun Majumdar, and Ram Rajagopal (2023). Geospatial Mapping of Distribution Grid with Machine Learning and Publicly-Accessible Multi-Modal Data. Nature Communications.
Zhecheng Wang, Rajanie Prabha*, Tianyuan Huang*, Jiajun Wu, and Ram Rajagopal (2024). SkyScript: A Large and Semantically Diverse Vision-Language Dataset for Remote Sensing. AAAI Conference on Artificial Intelligence. (* Equal contribution)
其它論文
Tianyuan Huang, Chad Zanocco, Zhecheng Wang, Jackelyn Hwang, and Ram Rajagopal (2025). Neighborhood Built Environment Disparities are Amplified During Extreme Weather Recovery. Accepted in principle by Nature.
Tony Liu, Chad Zanocco, Zhecheng Wang, Tianyuan Huang, June Flora, and Ram Rajagopal (2025). Large Language Model Enabled Knowledge Discovery of Building-Level Electrification Using Permit Data. Energy and Buildings.
Rajanie Prabha, Zhecheng Wang, Chad Zanocco, June Flora, and Ram Rajagopal (2025). DeepSolar-3M: An AI-Enabled Solar PV Database Documenting 3 Million Systems Across the US. ICLR Tackling Climate Change with Machine Learning Workshop. (Best Paper Award)
Moritz Wussow, Chad Zanocco, Zhecheng Wang, Rajanie Prabha, June Flora, Dirk Neumann, Arun Majumdar, and Ram Rajagopal (2024). Exploring the Potential of Non-Residential Solar to Tackle Energy Injustice. Nature Energy.
Tianyuan Huang, Timothy Dai, Zhecheng Wang, Hesu Yoon, Hao Sheng, Andrew Ng, Ram Rajagopal, and Jackelyn Hwang (2022). Detecting Neighborhood Gentrification at Scale via Street-level Visual Data. IEEE International Conference on Big Data.
Kevin Mayer, Benjamin Rausch, Marie-Louise Arlt, Gunther Gust, Zhecheng Wang, Dirk Neumann, and Ram Rajagopal (2022). 3D-PV-Locator: Large-Scale Detection of Rooftop-Mounted Photovoltaic Systems in 3D. Applied Energy.
Tianyuan Huang*, Zhecheng Wang*, Hao Sheng*, Andrew Ng, and Ram Rajagopal (2021). M3G: Learning Urban Neighborhood Representation from Multi-Modal Multi-Graph. ACM SIGKDD Workshop on Deep Learning for Spatiotemporal Data. (* equal contribution).
Mingxiang Chen, Qichang Chen, Lei Gao, Yilin Chen, and Zhecheng Wang (2021). Predicting Geographic Information with Neural Cellular Automata. AAAI AI for Urban Mobility Workshop.
Kevin Mayer, Zhecheng Wang, Marie-Louise Arlt, Dirk Neumann, and Ram Rajagopal (2020). DeepSolar for Germany: A Deep Learning Framework for PV System Mapping from Aerial Imagery. International Conference on Smart Energy Systems and Technologies (SEST).
Zhecheng Wang*, Haoyuan Li*, and Ram Rajagopal (2020). Urban2Vec: Incorporating Street View Imagery and POIs for Multi-Modal Urban Neighborhood Embedding. AAAI Conference on Artificial Intelligence. (* Equal contribution)
Qinghu Tang*, Zhecheng Wang*, Arun Majumdar, and Ram Rajagopal (2019). Fine-Grained Distribution Grid Mapping Using Street View Imagery. NeurIPS Tackling Climate Change with Machine Learning Workshop. (* Equal contribution)
Zhengcheng Wang*, Zhecheng Wang*, Arun Majumdar, and Ram Rajagopal (2019). Identify Solar Panels in Low Resolution Satellite Imagery with Siamese Architecture and Cross-Correlation. NeurIPS Tackling Climate Change with Machine Learning Workshop. (* Equal contribution)
Sharon Zhou, Jeremy Irvin, Zhecheng Wang, Eva Zhang, Jabs Aljubran, Will Deadrick, Ram Rajagopal, and Andrew Ng (2019). DeepWind: Weakly Supervised Localization of Wind Turbines in Satellite Imagery NeurIPS Tackling Climate Change with Machine Learning Workshop.
Neel Guha, Zhecheng Wang, and Arun Majumdar (2018). Machine Learning for AC Optimal Power Flow. ICML Climate Change Workshop. (Best Paper Award Honorable Mention)