朱東強
職稱:教授、博雅特聘教授
研究方向:環(huán)境地球化學, 生物地球化學
通訊地址:北京大學城市與環(huán)境學院新樓453室 海淀區(qū)頤和園路5號 北京市100871
Email:zhud@pku.edu.cn
個人主頁
https://orcid.org/0000-0001-6190-5522
研究方向
1)環(huán)境地球化學。有機污染物、重金屬與環(huán)境介質(包括礦物、有機質、黑碳、生物膜等)間的相互作用及其對污染物遷移、轉化/降解、生物效應的影響機制。
2)生物地球化學。地表環(huán)境中天然有機碳、黑碳、生物大分子的結構特征與演變規(guī)律,碳、鐵、硫等元素的生物地球化學過程及其耦合作用。
教育經歷
博士 (地球化學,2001),美國德州農工大學地質與地球物理系(Department of Geology & Geophysics, Texas A&M University, College Station)
碩士 (有機化學,1995),南開大學元素有機化學研究所
學士 (環(huán)境化學,1992),南開大學環(huán)境科學系
工作經歷
2015.06─至今:北京大學城市與環(huán)境學院博雅特聘教授,博士生導師
2005.12─2015.05: 南京大學環(huán)境學院教授,博士生導師
2004.06─2005.06: 博士后研究員,美國普度大學農業(yè)科學系
2002.02─2004.05: 博士后研究員,美國康涅狄格州農業(yè)研究所
學術兼職
Environmental Science & Technology Letters 編委(Member of Editorial Board,2013─)
Environmental Toxicology & Chemistry 編委(Member of Editorial Board,2012─2014)
Journal of Environmental Quality 副編輯(Associate Editor,2008─2013)
榮譽與獎勵
2025年 國家自然科學基金創(chuàng)新研究群體項目(A類)負責人
2017年 中組部第二批“萬人計劃”
2015年 科技部中青年科技創(chuàng)新領軍人才
2014年 教育部長江學者特聘教授
2014年 教育部自然科學一等獎, “水環(huán)境中污染物的界面化學過程及機制”(排名第1)
2012年 國家杰出青年基金
2011年 國家自然科學二等獎, “典型污染物環(huán)境化學行為、毒理效應及生態(tài)風險早期診斷方法”(排名第5)
2009年 教育部自然科學一等獎,“典型污染物毒性效應機制與早期預警方法研究”(排名第3)
2009年 “Scopus 未來科學之星”環(huán)境科學領域銀獎
2006年 教育部新世紀優(yōu)秀人才
2001年 美國化學協(xié)會(ACS)環(huán)境化學分會(Division of Environmental Chemistry)研究生優(yōu)秀論文獎(Graduate Student Paper Award)
人才培養(yǎng)
歡迎品行端正、熱愛科研、有協(xié)作精神的同學申請碩士和博士研究生、博士后崗位,具地球化學、分析化學、環(huán)境微生物背景者為佳。
科研項目
1) 污染物地球化學行為與氣候環(huán)境效應(2026.01-2030.12),國家自然科學基金創(chuàng)新研究群體A類項目(?42521004),主持。
2) 水環(huán)境中有機污染物界面過程研究(2013.01-2016.12),國家杰出青年基金項目(21225729),主持。
3) 污染場地中持久性有機污染物的積累效應和健康風險研究及預測模型建立(2020.01-2023.12),國家重點研發(fā)計劃項目(2019YFC1804200),主持。
4) 溶解態(tài)黑碳的地球化學行為、環(huán)境效應及其在我國重要河流的循環(huán)通量(2025.01-2029.12),國家自然基金重點項目(42430710),主持。
5) 土壤中持久性有機有毒污染物的遷移轉化規(guī)律及對地下水的影響(2007.01-2010.12),國家自然基金重點項目(20637030),主持。
6) 土壤中抗生素界面過程對其環(huán)境健康效應的影響及作用機制(2020.01-2024.12), 國家自然基金國際合作重點項目(21920102002),主持。
7) 土壤復合污染多介質界面過程與生物影響機制 (2020.01-2024.12),國家自然基金重大項目課題(41991331),主持。
8) 土壤有機污染物非線性微界面行為及其分子機制(2014.01-2018.12),國家973項目課題(2014CB441103),主持。
9) 微生物胞外聚合物的還原活性及其環(huán)境效應(2018.01-2021.12),國家自然基金面上項目(21777002),主持。
10) 土壤中煤源顆粒對有機污染物的吸附、解吸研究(2011.01-2013.12),國家自然基金面上項目(21077049),主持。
11) 黏土礦物中有機胺離子與多環(huán)芳烴間的陽離子-派鍵作用(2008.01-2010.12),國家自然基金面上項目(20777031),主持。
12) 溶解態(tài)有機物對有機污染物在礦物表面吸附的影響(2006.01-2006.12),國家自然基金科學部主任基金(20647002),主持。
13) 有機聚合物─黏土納米吸附材料研究(2007.01-2009.12),教育部新世紀優(yōu)秀人才支持計劃 (NCET-06-0453),主持。
14) 教育部留學回國人員科研啟動基金(2008.09-2009.12),主持。
代表性論文
一、天然有機質、黑碳生物地球化學行為和效應
1. Zhang, Z., X. Cui, C. Wei, S. Zang, S. Tao, and D. Zhu*. 2025. Contrasting photochemical behaviors between biogenic-sourced and combustion-sourced dissolved organic nitrogen. Geochim. Cosmochim. Ac. 411: 151–160. DOI: 10.1016/j.gca.2025.10.036
2. Wei, C., S. Yin, A. Kappler, S. Tao, and D. Zhu*. 2025. A new pathway for pyrite formation in low-sulfate sediments driven by mineralization of reduced organic sulfur. Fundamental Res. 5: 1607–1613. DOI: 10.1016/j.fmre.2023.08.003
3. Wei, C., S. Tao, P. G. Hatcher, and D. Zhu*. 2025. Strong depth-dependent chemical and structural characteristics of dissolved organic matter (DOM) in organic-rich sediment in a shallow temperate lake. Geochim. Cosmochim. Ac. 399: 242–256. DOI: 10.1016/j.gca.2025.05.002
4. Wei, C., H. Fu, X. Qu, S. Tao, P. G. Hatcher, and D. Zhu*. 2025. Contrasting molecular structures and photooxidation behaviors between dissolved organic sulfur released from rice straw-biochar and aerobically decomposed rice straw. Chemical Geology 671: 122494. DOI: 10.1016/j.chemgeo.2024.122494
5. Yin, S., Y. Liu, C. Wei, and D. Zhu*. 2024. Comparing molecular signatures of dissolved organic matter (DOM) in four large freshwater lakes differing in hydrological connectivity to the Changjiang River. Sci. Total Environ. 946: 174401. DOI: 10.1016/j.scitotenv.2024.174401
6. Zhang, Z.#, Cui, X.#, X. Qu, H. Fu, S. Tao, and D. Zhu*. 2024. Revealing molecular structures of nitrogen-containing compounds in dissolved black carbon using ultrahigh-resolution mass spectrometry combined with thermodynamic calculation. Environ. Sci. Technol. 58: 11998–12007. DOI: 10.1021/acs.est.4c01829
7. Yin, S.#, Wei, C.#, X. Qu, H. Fu, B. Li, S. Piao, S. Tao, P. G. Hatcher, and D. Zhu*. 2024. Benzenepolycarboxylic acids as exclusive intrinsic markers to assess riverine export of dissolved black carbon. Environ. Sci. Technol. 58: 1142–1151. DOI: 10.1021/acs.est.3c05988
8. Liu, Y., M. Wang, S. Yin, L. Xie, X. Qu, H. Fu, Q. Shi, F. Zhou, F. Xu, S. Tao, and D. Zhu*. 2022. Comparing photoactivities of dissolved organic matter released from rice straw-pyrolized biochar and composted rice straw. Environ. Sci. Technol. 56: 2803–2815. DOI: 10.1021/acs.est.1c08061
9. Wang, M., Y. Chen, H. Fu, X. Qu, B. Li, S. Tao, and D. Zhu*. 2020. An investigation on hygroscopic properties of 15 black carbon (BC)-containing particles from different carbon sources: Roles of organic and inorganic components. Atmos. Chem. Phys. 20: 7941–7954. DOI: 10.5194/acp-20-7941-2020
10. Qu, X., H. Fu, J. Mao, Y. Ran, D. Zhang, and D. Zhu*. 2016. Chemical and structural properties of dissolved black carbon released from biochars. Carbon 96: 759–767. DOI: 10.1016/j.carbon.2015.09.106
二、重金屬、有機污染物環(huán)境轉化過程與機制
1. Yi, L., W. Zhang, H. Li, Y. Lu, J. Liu, S. Tao, P. J. J. Alvarez, and D. Zhu*. 2024. Microbial dissimilatory iron reduction facilitates release and horizontal transfer of plasmid-borne antibiotic resistance genes adsorbed on hematite. Geochim. Cosmochim. Ac. 383: 70–80. DOI: 10.1016/j.gca.2024.08.005
2. Yi, L., W. Zhang, Z. Chen, H. Li, Y. Lu, S. Tao, and D. Zhu*. 2024. Products from photolysis reactions of tetracycline mediated by clay and humic substance induce contrasting expressions of target resistance genes. Environ. Sci. Technol. 58: 13950–13960. DOI: 10.1021/acs.est.4c03797
3. Wei, C., S. Tao, and D. Zhu*. 2023. New mechanism via dichlorocarbene intermediate for activated carbon-mediated reductive dechlorination of carbon tetrachloride by sulfide in aqueous solutions. Environ. Sci. Technol. 57: 15223–15231. DOI: 10.1021/acs.est.3c03333
4. Li, L., X. Wang, H. Fu, X. Qu, J. Chen, S. Tao, and D. Zhu*. 2020. Dissolved black carbon facilitates photoreduction of Hg(II) to Hg(0) and reduces mercury uptake by lettuce (Lactuca sativa L.). Environ. Sci. Technol. 54: 11137–11145. DOI: 10.1021/acs.est.0c01132
5. Zhou, X., F. Kang, X. Qu, H. Fu, P. J. J. Alvarez, S. Tao, and D. Zhu*. 2020. Role of extracellular polymeric substances in microbial reduction of arsenate to arsenite by Escherichia coli and Bacillus subtilis. Environ. Sci. Technol. 54: 6185–6193. DOI: 10.1021/acs.est.0c01186
6. Zhou, X., F. Kang, X. Qu, H. Fu, J. Liu, P. J. J. Alvarez, and D. Zhu*. 2020. Probing extracellular reduction mechanisms of Bacillus subtilis and Escherichia coli with nitroaromatic compounds. Sci. Total Environ. 724: 138291. DOI: 10.1016/j.scitotenv.2020.138291
7. Xu, L., H. Li, W. A. Mitch, S. Tao, and D. Zhu*. 2019. Enhanced phototransformation of tetracycline at smectite clay surfaces under simulated sunlight via a Lewis-base catalyzed alkalization mechanism. Environ. Sci. Technol. 53: 710–718. DOI: 10.1021/acs.est.8b06068
8. Kang, F., X. Qu, P. J. J. Alvarez, and D. Zhu*. 2017. Extracellular saccharide-mediated reduction of Au3+ to gold nanoparticles: New insights for heavy metals biomineralization on microbial surfaces. Environ. Sci. Technol. 51: 2776–2785. DOI: 10.1021/acs.est.6b05930
9. Kang, F., P. J. J. Alvarez, and D. Zhu*. 2014. Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity. Environ. Sci. Technol. 48: 316–322. DOI: 10.1021/es403796x
10. Fu, H., and D. Zhu*. 2013. Graphene oxide-facilitated reduction of nitrobenzene in sulfide-containing aqueous solutions. Environ. Sci. Technol. 47: 4204–4210. DOI: 10.1021/es304872k
三、有機污染物界面吸附行為與作用機制
1. Fu, H.#, Wang, B.#, D. Zhu*, Z. Zhou, S. Bao, X. Qu, Y. Guo, L. Ling, S. Zheng, P. Duan, J. Mao, K. Schmidt-Rohr, S. Tao, and P. J. J. Alvarez. 2022. Mechanism for selective binding of aromatic compounds on oxygen-rich graphene nanosheets based on molecule size/polarity matching. Science Adv. 8: eabn4650. DOI: 10.1126/sciadv.abn4650
2. Ji, L., Y. Wan, S. Zheng, and D. Zhu*. 2011. Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: Implication for the relative importance of black carbon to soil sorption. Environ. Sci. Technol. 45: 5580–5586. DOI: 10.1021/es200483b
3. Qu, X., Y. Zhang, H. Li, S. Zheng, and D. Zhu*. 2011. Probing the specific sorption sites on montmorillonite using nitroaromatic compounds and hexafluorobenzene. Environ. Sci. Technol. 45: 2209–2216. DOI: 10.1021/es104182a
4. Ji, L., F. Liu, Z. Xu, S. Zheng*, and D. Zhu*. 2010. Adsorption of pharmaceutical antibiotics on template-synthesized ordered micro- and mesoporous carbons. Environ. Sci. Technol. 44: 3116–3122. DOI: 10.1021/es903716s
5. Ji, L., W. Chen, L. Duan, and D. Zhu*. 2009. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents. Environ. Sci. Technol. 43: 2322–2327. DOI: 10.1021/es803268b
6. Qu, X., P. Liu, and D. Zhu*. 2008. Enhanced sorption of PAHs to tetra-alkyl ammonium modified smectites via cation-π interactions. Environ. Sci. Technol. 42: 1109–1116. DOI: 10.1021/es071613f
7. Qu, X., X. Wang, and D. Zhu*. 2007. The partitioning of PAHs to egg phospholipids facilitated by copper and proton binding via cation-π interactions. Environ. Sci. Technol. 41: 8321–8327. DOI: 10.1021/es0718117
8. Chen, W., L. Duan, and D. Zhu*. 2007. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ. Sci. Technol. 41: 8295–8300. DOI: 10.1021/es071230h
9. Xiao, L., X. Qu, and D. Zhu*. 2007. Biosorption of nonpolar hydrophobic organic compounds to Escherichia coli facilitated by metal and proton surface binding. Environ. Sci. Technol. 41: 2750–2755. DOI: 10.1021/es062343o
10. Chen, J., D. Zhu*, and C. Sun. 2007. Effect of heavy metals on the sorption of hydrophobic organic compounds to wood charcoal. Environ. Sci. Technol. 41: 2536–2541. DOI: 10.1021/es062113+