師資隊(duì)伍
個(gè)人簡(jiǎn)歷
金哲儂
職稱(chēng):長(zhǎng)聘副教授、研究員
研究方向:農(nóng)業(yè)生態(tài)學(xué)、農(nóng)業(yè)遙感、人工智能
通訊地址:北京市海淀區(qū)海淀路50號(hào)北京大學(xué)資源東樓
Email : jinzhenong@pku.edu.cn
個(gè)人簡(jiǎn)介
本人的工作以生態(tài)學(xué)理論為基礎(chǔ),綜合運(yùn)用機(jī)理模型、遙感觀測(cè)、人工智能等大數(shù)據(jù)技術(shù)手段,研究農(nóng)業(yè)生態(tài)系統(tǒng)對(duì)全球變化的響應(yīng)機(jī)制,及其與其他環(huán)境系統(tǒng)之間的交互過(guò)程,為科學(xué)監(jiān)測(cè)和管理農(nóng)田生態(tài)系統(tǒng)的復(fù)雜過(guò)程提供理論依據(jù)和技術(shù)支撐,最終實(shí)現(xiàn)農(nóng)業(yè)生產(chǎn)和生態(tài)環(huán)境保護(hù)的協(xié)同、可持續(xù)發(fā)展。相關(guān)論文發(fā)表在Science, 多個(gè)Nature子刊,Global Change Biology, Remote Sensing of Environment 等頂級(jí)期刊。曾獲美國(guó)國(guó)家科學(xué)基金會(huì)職業(yè)生涯發(fā)展獎(jiǎng)(NSF CAREER Award)。
教育經(jīng)歷
2011.8 – 2016.5 美國(guó)普渡大學(xué),地球與大氣科學(xué),博士
2007.9 – 2011.7 北京大學(xué),生態(tài)學(xué),學(xué)士
工作經(jīng)歷
2024.9 – 至今 北京大學(xué)城市與環(huán)境學(xué)院、生態(tài)研究中心,長(zhǎng)聘副教授、研究員
2024.5 – 2024.8 美國(guó)明尼蘇達(dá)大學(xué),長(zhǎng)聘副教授
2019.1 – 2024.5 美國(guó)明尼蘇達(dá)大學(xué),助理教授
2018.7 – 2019.1 美國(guó)Atlas AI公司,Lead Scientist
2016.7 – 2018.6 美國(guó)斯坦福大學(xué),博士后
學(xué)術(shù)兼職
AGU期刊Earth's Future 副主編
Environmental Research:Food System 編委
SCIENCE CHINA Life Sciences 編委
歡迎對(duì)農(nóng)業(yè)生態(tài)學(xué)、農(nóng)業(yè)遙感、人工智能感興趣的本科生、研究生和博士后加入研究組!
科學(xué)問(wèn)題
如何在保障糧食安全的同時(shí)實(shí)現(xiàn)生態(tài)環(huán)境的可持續(xù)發(fā)展?
如何利用人工智能提升數(shù)值模型的預(yù)測(cè)精度和可遷移性?
科研項(xiàng)目
在美國(guó)期間主要項(xiàng)目(已全部于2024年9月回國(guó)入職前終止):
【1】NSF CAREER: AI-enabled Integrated Nutrient, Streamflow, and Parcel sImulation for Resilient agroEcosystems (INSPIRE): a framework for climate-smart crop production and cleaner water 主持
【2】NSF III: Medium: Advancing Deep Learning for Inverse Modeling 參與
【3】USDA NIFA: National Artificial Intelligence Institute for Climate-Land Interactions, Mitigations, Adaption, Trade-offs and Economy (AI-CLIMATE) 參與
【4】USDA NIFA: High-resolution integrated assessments of tillage practice impacts on crop production and agroecosystem sustainability in the US Midwest - combining meta-analysis, airborne-satellite sensing, and process-based modeling 參與
【5】USDA FAS: ProsperCashew: Mapping cashew plantation and productivity in Cote d'Ivoire 主持
【6】NSF SCC-IRG Track 1: Co-Producing Community - An integrated approach to building smart and connected nutrient management communities in the US Corn Belt 參與
【7】USDA WinterTurf: A Holistic Approach to Understanding the Mechanisms and Mitigating the Effects of Winter Stress on Turfgrasses in Northern Climates 參與
【8】NSF SitS: Spatial and Temporal Patterns of Soil N and P Cycles Quantified by a Sensor-Model Fusion Framework: Implications for Sustainable Nutrient Management 主持
【9】DOE SMARTFARM: The System of Systems Solutions for Commercial Field-Level Quantification of Soil Organic Carbon and Nitrous Oxide Emission for Scalable Applications (SYMFONI) 參與
【10】USAID SIIL: Geospatial, Farming Systems, and Digital Tools Consortium Building a New Era of Predictive Agricultural Innovation to Improve the Livelihood of Small holder Farmers 參與
【11】USDA FAS: BeninCaju: Mapping cashew plantation and productivity in Benin 主持
【12】NASA LCLUC: Evaluating land use change and livelihood responses to large investments for high-value agriculture: managing risks in the era of Green Morocco Plan 主持
全部論文
https://scholar.google.com/citations?user=DghN-sAAAAAJ&hl=en
近5年代表性論文
#: 通訊作者,下劃線: 指導(dǎo)學(xué)生
[1] Yang, Y., Tilman, D.#, Jin, Z.#, Smith, P., Barrett, C.B.#, Zhu, Y.G., ... & Lobell, D.B.# (2024). Climate change exacerbates the environmental impacts of agriculture. Science, 385(6713), eadn3747.
[2] Zhou, J., Zhu, P., Kluger, D. M., Lobell, D. B., & Jin, Z.# (2024). Changes in the Yield Effect of the Preceding Crop in the US Corn Belt Under a Warming Climate. Global Change Biology, 30(11), e17556.
[3] Liu, L., Zhou, W., Guan, K.#, Peng, B., Xu, S., Tang, J., Zhu, Q., Till, J., Jia, X., Jiang, C., Wang, S., ..., Kumar, V. & Jin, Z.# (2024) Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems. Nature Communications, 15, 357.
[4] Yang, Q., Liu, L., Zhou, J., Ghosh, R., Peng, B., Guan, K., Tang, J., Zhou, W., Kumar, V., & Jin, Z.# (2023) A flexible and efficient knowledge-guided machine learning data assimilation (KGML-DA) framework for agroecosystem prediction in the US Midwest. Remote Sensing of Environment, 299, 113880.
[5] Yang, Y., Jin, Z.#, Muller, N.D.#, Driscoll, A., Hernandez, R.R., Grodsky, S., Sloat, L., …, Zhu, Y.G., & Lobell, D.B. (2023) Sustainable irrigation and climate feedbacks. Nature Food, 4, 654–663.
[6] Yin, L., Ghosh, R., Lin, C., Hale, D., Weigl, C., Obrowski, J., Zhou, J., Till, J., Jia, X., You, N., Mao, T., Kumar, V., & Jin, Z.# (2023) Mapping smallholder cashew plantations to inform sustainable tree crop expansion in Benin. Remote Sensing of Environment, 295, 113695.
[7] Liu, L., Xu, S., Tang, J., Guan, K., Griffis, T.J., Erickson, M.D., Frie, A.L., Jia, X., Kim, T., Miller, L.T., Peng, B., ..., Kumar, V., & Jin, Z.# (2022) KGML-ag: A Modeling Framework of Knowledge- Guided Machine Learning to Simulate Agroecosystems: A Case Study of Estimating N2O Emission using Data from Mesocosm Experiments. Geoscientific Model Development, 15, 2839–2858.
[8] Lin, C., Zhong, L., Song, X., Dong, J., Lobell, D.B., & Jin, Z.# (2022) Early- and in-season crop type mapping without current-year ground truth: Generating labels from historical information via a topology-based approach. Remote Sensing of Environment, 274, 112994.
[9] Zhu, P., Kim, T., Jin, Z.#, Lin, C., Wang, X., Ciais, P., Mueller, N.D., AghaKouchak, A., Huang, J., Mulla, D., & Makowski, D. (2022) The critical benefits of snowpack insulation and snowmelt for winter wheat productivity. Nature Climate Change, 12, 485–490.
[10] Benami, E.#, Jin, Z.#, Carter, M., Lobell, D.B., Kenduiywo, B., Ghosh, A., & Hijmans, R. (2021) Uniting remote sensing, crop modelling and economics for agricultural risk management. Nature Review Earth & Environment, 2, 140-159.